首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue-specific assembly of fibers composed of the major collagen types I and II depends in part on the formation of heterotypic fibrils, using the quantitatively minor collagens V and XI. Here we report the identification of a new fibrillar-like collagen chain that is related to the fibrillar alpha1(V), alpha1(XI), and alpha2(XI) collagen polypeptides and which is coexpressed with type I collagen in the developing bone and eye. The new collagen was designated the alpha1(XXIV) chain and consists of a long triple helical domain flanked by typical propeptide-like sequences. The carboxyl propeptide is classic, with 8 conserved cysteine residues. The amino-terminal peptide contains a thrombospodin-N-terminal-like (TSP) motif and a highly charged segment interspersed with several tyrosine residues, like the fibril diameter-regulating collagen chains alpha1(V) and alpha1(XI). However, a short imperfection in the triple helix makes alpha1(XXIV) unique from other chains of the vertebrate fibrillar collagen family. The triple helical interruption and additional select features in both terminal peptides are common to the fibrillar chains of invertebrate organisms. Based on these data, we propose that collagen XXIV is an ancient molecule that may contribute to the regulation of type I collagen fibrillogenesis at specific anatomical locations during fetal development.  相似文献   

2.
Genes for tetrapod fibrillar procollagen chains can be divided into two clades, A and B, based on sequence homologies and differences in protein domain and gene structures. Although the major fibrillar collagen types I–III comprise only clade A chains, the minor fibrillar collagen types V and XI comprise both clade A chains and the clade B chains pro-α1(V), pro-α3(V), pro-α1(XI) and pro-α2(XI), in which defects can underlie various genetic connective tissue disorders. Here we characterize the clade B procollagen chains of zebrafish. We demonstrate that in contrast to the four tetrapod clade B chains, zebrafish have six clade B chains, designated here as pro-α1(V), pro-α3(V)a and b, pro-α1(XI)a and b, and pro-α2(XI), based on synteny, sequence homologies, and features of protein domain and gene structures. Spatiotemporal expression patterns are described, as are conserved and non-conserved features that provide insights into the function and evolution of the clade B chain types. Such features include differential alternative splicing of NH2-terminal globular sequences and the first case of a non-triple helical imperfection in the COL1 domain of a clade B, or clade A, fibrillar procollagen chain. Evidence is also provided for previously unknown and evolutionarily conserved alternative splicing within the pro-α1(V) C-propeptide, which may affect selectivity of collagen type V/XI chain associations in species ranging from zebrafish to human. Data presented herein provide insights into the nature of clade B procollagen chains and should facilitate their study in the zebrafish model system.  相似文献   

3.
4.
The biosynthesis of collagen by the A204 cell line was examined using polyclonal antibodies raised against collagen type V and type XI. The study of the pepsin-digested collagen showed that it is composed mainly of alpha 1(XI) and alpha 2(V) collagen chains in an apparent 2:1 ratio, suggesting the formation of heterotypic molecules [alpha 1(XI)]2 alpha 2(V). The existence of this chain stoichiometry was further demonstrated by immunoprecipitation of the molecule with an antibody recognizing alpha 2(V) but not alpha 1(XI) collagen chains. Electron microscopy analyses of 24-h cultures showed that this matrix is composed of thin fibrils, that can be decorated with immunogold-labelled anti-(type-V collagen) IgG, but not with anti-(type-XI collagen) IgG. The collagen matrix laid down by A204 cells is highly insoluble. In the presence of beta-aminopropionitrile, an inhibitor of lysyl oxidase, only a small proportion of intact collagen could be extracted without proteolytic treatment. Immunoblotting of intact medium collagen from cultures performed in the presence of beta-aminopropionitrile showed four distinct bands with each antibody. The migration of the bands, stained with anti-(type-V collagen) IgG, had apparent molecular masses of 127, 149, 161 and 198 kDa (compared to globular standards) while the bands stained with anti-(type-XI collagen) IgG had apparent masses of 145, 182, 207 and 225 kDa. These data indicate that type-V and type-XI collagen chains can assemble in heterotypic isoforms. In this system, the synthesized isoforms are able to aggregate into a highly cohesive matrix and they undergo a proteolytic processing closely similar to that of other fibrillar collagens.  相似文献   

5.
Complete primary structure of human collagen alpha 1 (V) chain   总被引:4,自引:0,他引:4  
Several cDNA clones, encoding prepropeptide of human collagen alpha 1(V) chain, have been isolated. The prepropeptide (1838 amino acids length) of the alpha 1(V) chain was composed of a putative signal peptide, a large NH2-terminal noncollagenous region, a main collagenous region, and a COOH-terminal noncollagenous region. The signal peptide contained many leucine residues. The NH2-terminal noncollagenous region was much larger than those of the other collagens and had a region homologous to the COOH-terminal domain of laminin A chain, but it did not contain a cysteine-rich region that was maintained in the region of the other collagens. This region also contained probable tyrosine sulfation sites, and short collagenous sequences that were interrupted by three noncollagenous segments. The main collagenous region of the alpha 1(V) chain consisted of 338 repeats of Gly-X-Y-triplet. This region had a high degree (82%) of homology with the amino acids of the collagen alpha 1(XI) chain. The COOH-terminal noncollagenous region resembled that of the alpha 1(XI) chain, too, and 8 residues of cysteine that were important for the formation of the triple helix structure of collagens were observed. These results suggest that the alpha 1(V) chain belongs to the fibrillar collagen relative to the alpha 1(XI) chain, but codon usage of the alpha 1(V) cDNA was clearly different from those of the other fibrillar collagens including the alpha 1(XI), while it was similar to type IV collagen. This result supposes a different evolution of the alpha 1(V) gene from those of the other fibrillar collagens.  相似文献   

6.
We recently cloned and sequenced alpha 1 (VIII) collagen cDNAs and demonstrated that type VIII collagen is a short-chain collagen that contains both triple helical and carboxyl-terminal non-triple helical domains similar to those of type X collagen (Yamaguchi, N., Benya, P., van der Rest, M., and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022-16029). We report here on the structural organization of the gene encoding the rabbit alpha 1 (VIII) collagen chain. The alpha 1 (VIII) gene contains four exons, whose sizes are 69, 120, 331, and 2278 base pairs. The first and second exons encode only 5'-untranslated sequences, whereas the third exon codes for a very short (3 nucleotides) stretch of 5'-untranslated sequence, the signal peptide, and almost the entire amino-terminal non-triple helical (NC2) domain (109 1/3 codons). Interestingly, the last exon encodes the rest of the translated region, including 7 2/3 codons of the NC2 domains, the complete triple helical domain (COL1, 454 amino acid residues), the entire carboxyl-terminal non-triple helical domain (NC1, 173 amino acid residues), and the 3'-untranslated region. This exon-intron structure is in stark contrast to the multi-exon structure of the fibrillar collagen (types I, II, III, V, and XI) genes, but it is remarkably similar to that of the type X collagen gene (LuValle, P., Ninomiya, Y., Rosenblum, N. D., and Olsen, B. R. (1988) J. Biol. Chem. 263, 18278-18385). The data suggest that the alpha 1 (VIII) and the alpha 1 (X) genes belong to the same subclass within the collagen family and that they arose from a common evolutionary precursor.  相似文献   

7.
We have determined the nucleotide sequence of several overlapping cDNA clones encoding the amino-terminal portion of human alpha 1(XI) procollagen. These experiments have revealed that this domain of the pro-alpha(XI) chain displays structural features common to other fibrillar procollagen molecules, such as a putative amino-terminal proteinase cleavage site and an interrupted collagenous segment. In the latter, structural similarities were noted when alpha 1(XI) was compared with alpha 1(II) and alpha 2(V) procollagens. Overall, however, the amino-terminal region of pro-alpha 1(XI) differs greatly in composition and size from that of other fibrillar chains. Nearly three-fourths of this domain is in fact composed of a 383-amino acid globular region in which a 3-cysteine cluster signals the transition to a long and highly acidic carboxyl-terminal segment. Finally, the unrestricted expression of this cartilage-specific collagen gene has been confirmed by the finding of high levels of pro-alpha 1(XI) mRNA in two human rhabdomyosarcoma cell lines.  相似文献   

8.
We have isolated three overlapping cDNA clones encoding the pro alpha 2(XI) collagen chain from a human chondrocyte cDNA library. Together, the cDNAs code for 257 uninterrupted Gly-X-Y triplets (almost 80% of the triple helical domain) and about 200 amino acid residues of the carboxyl telopeptide and carboxyl propeptide. The identification of the clones as pro alpha 2(XI) cDNAs was based on the complete identity between the amino acid sequences of three tryptic peptides derived from human alpha 2(XI) collagen and the cDNA-derived sequence. We have also sequenced six exons within a human genomic alpha 2(XI) cosmid clone. This sequence shows that although type XI collagen belongs to the fibril-forming class of collagens, there are substantial differences in exon sizes at the 3' end of the gene when comparing the alpha 2(XI) gene with those of human types I, II, and III collagens. Finally, pro alpha 2(XI) cDNA has been used as a probe to determine the location of the gene by in situ hybridization of chromosome spreads. The results demonstrate that the gene is located close to the region p212 on chromosome 6. Northern blot analysis shows that the gene is expressed in cartilage but not in adult liver, skin, and tendon.  相似文献   

9.
10.
Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage   总被引:14,自引:0,他引:14  
Human recombinant stromelysin-1 was shown to cleave four types of collagen (types II, IX, X, and XI) prepared from bovine and rat cartilages at specific sites. Stromelysin-1 cleaved salt-soluble native molecules of type IX collagen into two main triple-helical fragments, COL1 and COL2,3. Protein microsequencing identified the exact cleavage sites in the NC2 domain of all three chains, alpha 1(IX), alpha 2(IX), and alpha 3(IX). Stromelysin-1 also acted as a "telopeptidase," in that it efficiently clipped intact molecules of types II and XI collagens at sites just inside their terminal cross-linking hydroxylysine residues. Native molecules of type X collagen were cleaved by stromelysin-1 within their triple helical domains at a COOH-terminal site that reduced the alpha 1(X) chain size by 10 kDa. These findings suggest an important role for stromelysin in the turnover and remodeling of the collagenous matrix of cartilage both normally and in degenerative joint disease.  相似文献   

11.
The amino terminal domain of collagen XI has a unique structure, which is believed to participate in the regulation of matrix assembly. Interestingly, several distinct isoforms of the amino terminal domain of alpha1(XI) and alpha2(XI) collagen chains exist as a result of alternative splicing. Here we report the analysis of the alternative splicing pattern of the mouse alpha1(XI) collagen gene (Col11a1). Like other vertebrate species, the mutually exclusive expression of exons 6A and 6B of Col11a1 results in the inclusion in the alpha1 chain of either an acidic peptide (pI 3.14) or a basic peptide (pI 11.66). Expression of these two exons was monitored in several tissues of the 16.5-day mouse embryo by in situ hybridization and immunohistochemistry, with exon-specific cDNA probes and peptide-specific antibodies, respectively. The results documented that isoforms containing the exon 6B-encoded peptide accumulate predominantly in the vertebrae, skeletal muscles and intestinal epithelium. By contrast, exon 6A products were found to be most abundant in the smooth muscle cells of the intestine, aorta and lung. The results using in situ hybridization confirmed those using immunohistochemistry. Albeit correlative, the evidence suggests distinct contributions of the two peptides to the differential assembly of tissue-specific matrices.  相似文献   

12.
Type XI collagen is a minor and poorly characterized structural component of cartilage. Recently, cDNA and genomic clones coding for the pro alpha 1 chain of human Type XI collagen, formerly 1 alpha collagen, have been isolated and fully characterized. Here we have used one such probe to establish the chromosomal localization of the pro alpha 1 (XI) collagen gene (COL11A1) by hybridization to filter-bound DNA isolated from flow-sorted chromosomes and by in situ hybridization on metaphase chromosomes. This combination of approaches has enabled us to locate COL1A11 in the p21 region of chromosome 1. This represents the first mapping of a Type XI collagen gene and the first assignment of a collagen locus to chromosome 1. These studies also provide additional evidence for the nearly uniform dispersion of the human fibrillar collagen genes in the human genome.  相似文献   

13.
Collagen type XI is a component of hyaline cartilage consisting of alpha 1(XI), alpha 2(XI), and alpha 3(XI) chains; with 5-10% of the total collagen content, it is a minor but significant component next to type II collagen, but its function and precise localization in cartilaginous tissues is still unclear. Owing to the homology of the alpha 3(XI) and alpha 1(II) collagen chains, attempts to prepare specific antibodies to native type XI collagen have been unsuccessful in the past. In this study, we report on the preparation and use for immunohistochemistry of a polyclonal antibody specific for alpha 2(XI) denatured collagen chains. The antibody was prepared by immunization with the isolated alpha 2(XI) chain and reacts neither with native type XI collagen nor type I, II, V, or IX by ELISA or immunoblotting, nor with alpha 1(XI) or alpha 3(XI), but with alpha 2(XI) chains. Using this antibody, it was possible to specifically localize alpha 2(XI) in cartilage by pretreating tissue sections with 6 M urea. In double immunofluorescence staining experiments, the distribution of alpha 2(XI) as indicative for type XI collagen in fetal bovine and human cartilage was compared with that of type II collagen, using a monoclonal antibody to alpha 1(II). Type XI collagen was found throughout the matrix of hyaline cartilage. However, owing to cross-reactivity of the monoclonal anti-alpha 1(II) with alpha 3(XI), both antibodies produced the same staining pattern. Cellular heterogeneity was, however, detected in monolayer cultures of human chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
We have isolated a partial cDNA for alpha 1(XI) collagen from a bovine smooth muscle cell (SMC) library. Previously, this collagen was not known to be expressed in SMCs. Comparison of the nucleotide and deduced amino acid sequence of the 2.7-kilobase bovine clone and the human alpha 1(XI) sequence indicates 92 and 98% homology, respectively. Bovine SMCs in culture were found to produce alpha 1(XI) mRNA. However, alpha 2(XI) and alpha 1(II) collagen RNA were not detectable; therefore, SMCs cannot synthesize the same type XI collagen as found in cartilage. Since type XI collagen is structurally related to type V collagen, the expression of alpha 1(XI) and alpha 2(V) collagen mRNA in SMCs was characterized. Levels of alpha 1(XI) and alpha 2(V) collagen mRNAs were low in exponentially growing SMCs and increased 3-4-fold as cells became confluent. Increased mRNA levels were also observed when exponentially growing subconfluent SMCs were incubated in medium containing 0.5% fetal bovine serum for 24 h, similar to the effects of serum deprivation on the expression of types I and III collagen genes (Kindy, M. S., Chang, C.-J., and Sonenshein, G. E. (1988) J. Biol. Chem. 263, 11426-11430). However, as cell density increased, serum deprivation resulted in very different responses for these collagen genes. Serum deprivation caused a decrease in expression of alpha 1(XI) and alpha 2(V) collagen mRNAs in cultures as they approached confluence. In contrast, at confluence alpha 1(I) and alpha 2(I) mRNA levels no longer responded to serum concentration whereas expression of alpha 1(III) mRNA remained inducible by serum deprivation. These results suggest concerted regulation of alpha 1(XI) and alpha 2(V) collagen gene expression, which is distinct from that for the chains of type I and type III collagen with respect to cell density and serum.  相似文献   

16.
C Niyibizi  D R Eyre 《FEBS letters》1989,242(2):314-318
Type V collagen prepared from bovine bone was resolved into three distinct alpha-chains by high performance liquid chromatography and gel electrophoresis. Peptide mapping established two chains as alpha 1(V) and alpha 2(V) as expected and the third as the cartilage alpha 1(XI) chain (previously thought to be unique to cartilage). In adult bone, the type V collagen fraction was richer in alpha 1(XI) chains than in fetal bone (about 1/3 of the chains in the adult). How these polypeptides are organized into native molecules is not yet clear, though the stoichiometry suggests cross-type heterotrimers between the type V and XI chains.  相似文献   

17.
Type V collagen was prepared from human amnionic/chorionic membranes and separated into alpha 1(V) and alpha 2(V) polypeptide chains. The alpha 1(V) chain was digested with cyanogen bromide and nine peptides were obtained and purified. Three of the peptides, alpha 1(V)CB1, CB4, and CB7 having molecular weights of 5000, 8000, and 6000, respectively, were further analyzed by amino acid sequence analysis and thermolytic or tryptic digestions. CB1 contained 54 amino acids and identification of its complete sequence was aided by thermolysin digestion and isolation of two peptides, Th1 and Th2. CB4 contained 81 amino acids and sequence analysis of intact CB4 and five tryptic peptides provided us with its complete amino acid sequence. The peptide CB7 contained 67 amino acids and was cleaved into four tryptic peptides that were used for complete sequence analysis. The above results represent the first available covalent structure information on the alpha 1(V) collagen chain. These data enabled us to establish the location of these peptides within the helical structure of other collagen chains. CB4 was homologous to residues 66-145 in the collagen chain while CB1 represented residues 146-200 and CB7 was homologous with residues 201-269. This alignment was facilitated by identification of a helical collagen crossing site consisting of Hyl-Gly-His-Arg located at positions 87-90 in all collagen chains of this size thus far identified. Seventy-one percent homology (excluding Gly residues) was found between amino acids in this region of the alpha 1(XI) and of alpha 1(V) collagen chains while only 21 and 19% identity was calculated for the same region of alpha 2(V) and alpha 1(I) collagen chains, respectively.  相似文献   

18.
Type IV collagen is a major structural component in basement membranes. It is considerably different from the fibrillar collagens, types I-III. For example, unlike fibrillar collagens, the triple helical domain of type IV collagen is frequently interrupted by nonhelical regions. In this report, we demonstrate several overlapping genomic clones which cover most of the mouse alpha 1(IV) chain. Electron microscopic analysis of R-loops revealed that there were at least 28 exons within 35 kilobases of the gene segment. The sizes of six exons were determined by DNA sequence analysis to be 81, 178, 134, 73, 129, and 213 base pairs. These sizes do not appear to be related to the 54-base pair coding unit which is characteristic of fibrillar collagen exons, suggesting that the alpha 1 type IV collagen gene evolved differently from the fibrillar collagen genes.  相似文献   

19.
The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.  相似文献   

20.
Type V collagen is a fibrillar collagen that is widely distributed in tissues as a minor component of extracellular matrix and is usually composed of one pro alpha 2 (V) and two pro alpha 1 (V) chains. In this report, recently isolated cDNA and genomic clones, which encode the pro alpha 1 (V) chain, are used as probes for hybridization to filter-bound DNA from a panel of human-mouse hybrid cell lines and for in situ hybridization to metaphase chromosomes. These studies establish the chromosomal location of the COL5A1 gene, which encodes the pro alpha 1 (V) chain, within segment 9q34.2----q34.3. These findings add to the previously characterized dispersion of collagen genes in the human genome, as this is the first example of a collagen locus on chromosome 9. In addition, these studies place COL5A1 near the locus for the genetic disorder, nail-patella syndrome (hereditary osteo-onychodysplasia), which also maps to 9q34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号