首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between pure transhydrogenase and ATPase (Complex V) from beef heart mitochondria was investigated with transhydrogenase-ATPase vesicles in which the two proteins were co-reconstituted by dialysis or dilution procedures. In addition to phosphatidylcholine and phosphatidylethanolamine, reconstitution required phosphatidylserine and lysophosphatidylcholine. Transhydrogenase-ATPase vesicles catalyzed a 20-30-fold stimulation of the reduction of NADP+ or thio-NADP+ by NADH and a 70-fold shift of the apparent equilibrium expressed as the nicotinamide nucleotide ratio [NADPH][NAD+]/[NADP+][NADH]. In both of these respects, the transhydrogenase-ATPase vesicles were severalfold more efficient than beef heart submitochondrial particles. By measuring the ATP-driven transhydrogenase and the oligomycin-sensitive ATPase activities simultaneously and under the same conditions at low ATP concentrations, i.e. below 15 microM, the ATP-driven transhydrogenase/oligomycin-sensitive ATPase activity ratio was found to be about 3. This value is consistent with the stoichiometries of three protons translocated per ATP hydrolyzed and one proton translocated per NADPH formed and with a mechanism where the two enzymes interact through a delocalized proton-motive force.  相似文献   

2.
Nicotinamide nucleotide transhydrogenase from bovine heart mitochondria was solubilized with cholate and partially purified by ammoniumsulphate fractionation and density gradient centrifugation. Compared to submitochondrial particles this preparation contained less than 10% of oligomycin-sensitive ATPase and cytochromes. When reconstituted with purified mitochondrial phosphatidylcholine, the enzyme catalyzed a reduction of NAD+ by NADPH that was stimulated by uncouplers and which showed a concomitent uncoupler-sensitive uptake of the lipophilic anion tetraphenylboron, indicating the generation of a membrane potential. It is concluded that transhydrogenase can energize the vesicles directly without the intervention of ATPase or cytochromes.  相似文献   

3.
Mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was purified by a novel procedure involving fast protein liquid chromatography and characterized with respect to molecular and catalytic properties. The method is reproducible, gives highly pure transhydrogenase as judged by silver staining, and can be modified to produce large amounts of pure transhydrogenase protein suitable for e.g. sequencing and other protein chemical studies. Transhydrogenase purified by fast protein liquid chromatography is reconstitutively active and pumps protons as indicated by an extensive quenching of 9-aminoacridine fluorescence. Under conditions which generate a proton gradient in the absence of a membrane potential the activity of reconstituted transhydrogenase is close to zero indicating a complete and proper incorporation in the membrane and a preferential regulation of the enzyme by a proton gradient rather than a membrane potential. Treatment of reconstituted transhydrogenase with N,N-dicyclohexylcarbodiimide results in an inhibition of proton pump activity without an effect on uncoupled catalytic activity, suggesting that proton translocation and catalytic activities are not obligatory linked or that this agent separates proton pumping from the catalytic activity.  相似文献   

4.
Plasma membrane vesicles were reconstituted by freezing and thawing of purified plasma membrane fraction from the yeast Metschnikowia reukaufii and phosphatidylcholine (type II-S from Sigma). The reconstituted plasma membrane vesicles generated a proton gradient (acidic inside) upon addition of ATP in presence of alkali cations. delta pH generation was most efficient when K+ was present both outside and inside the plasma membrane vesicles. Both ATPase activity and proton translocation in plasma membrane vesicles were inhibited by orthovanadate (50% inhibition at 100 microM). Plasma membrane vesicles reconstituted without added phosphatidylcholine generated in addition to delta pH, also an electrical potential difference delta psi (inside positive). Delta psi generation exhibited no K+ specificity. 50 microM dicyclohexylcarbodiimide inhibited completely delta psi generation whereas the K+-channel blocker quinine (5 microM) caused an 8-fold increase of delta psi. The proton gradient was much less affected by the agents. Taking into account the K+-dependent stimulation of the plasma membrane ATPase of M. reukaufii, these results further support the conclusion that the ATPase operates as a partially electrogenic H+/K+ exchanger, as was also suggested for other yeast plasma membrane ATPases.  相似文献   

5.
The adenosine 5'-triphosphate (ATP)-linked transhydrogenase reaction, present in the particulate fractions of Escherichia coli, was previously shown to be inhibited in these fractions when the bacteria were treated with colicins K or El. The purpose of this study was to characterized the ATP-linked transhydrogenase reaction and the colicin-caused inhibition of the reaction in purified cytoplasmic membranes. Particulate fractions from bacteria treated or untreated with colicins were separated on sucrose gradients into cell wall membrane and cytoplasmic membrane fractions. The ATP-linked transhydrogenase reaction was found to be exclusively associated with the cytoplasmic membrane fractions. The reaction was inhibited by carbonylcyanide m-chlorophenlhdrazone, dinitrophenol, N,N'-dicyclohexylcarbodiimide, and trypsin. Although the cytoplasmic membrane fractions were purified from the majoriy of the cell wall membrane and its bound colicins, they showed the inhibitory effects of colicins K and El on the ATP-linked transhydrogenase reaction. The inhibition of ATP-linked transhydrogenase reaction induced by the colicin could not be reversed by subjection the isolated membranes to a variety of physical and chemical treatments. Cytoplasmic membranes depleted of energy-transducing adenosine triphosphatase ATPase) complex (coupling factor) lost the ATP-linked transhydrogenase activity. The ATPase complexes isolated from membranes of bacteria treated or untreated with colicins El or K reconstituted high levels of ATP-linded transhydrogenase activity to depleted membranes of untreated bacteria. The same ATPase complexes reconstituted low levels of activity to depleted membranes of the treated bacteria.  相似文献   

6.
Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.  相似文献   

7.
Vanadate inhibited the formation of proton gradient and membrane potential as well as Ca2+ transport by everted membrane vesicles from Mycobacterium phlei, with half-maximal inhibition occurring at 5 to 14 microM. That this is due to the inhibition of the proton-translocating ATPase was suggested by the observation that the inhibition described above occurred only when the processes were driven by the hydrolysis of ATP but not when energized by the oxidation of succinate and NADH. Furthermore, vanadate did indeed inhibit ATP hydrolysis by these membrane vesicles. Although the inhibition of ATP hydrolysis could be demonstrated only in the presence of high concentrations (e.g. 11 mM) of Mg2+, this was presumably due to the fact that we were measuring the sum of ATP hydrolysis by both coupled and partially uncoupled enzymes. This is the first reported effect of vanadate on bacterial proton-translocating ATPase.  相似文献   

8.
The mechanism of coupling between mitochondrial ATPase (EC 3.6.1.3) and nicotinamide nucleotide transhydrogenase (EC 1.6.1.1) was studied in reconstituted liposomes containing both purified enzymes and compared with their behavior in submitochondrial particles. In order to investigate the mode of coupling between the transhydrogenase and the ATPase by the double-inhibitor and inhibitor-uncoupler methods, suitable inhibitors of transhydrogenase and ATPase were selected. Phenylarsine oxide and A3'-O-(3-(N-(4-azido-2-nitrophenyl)amino)propionyl)-NAD+ were used as transhydrogenase inhibitors, whereas of the various ATPase inhibitors tested aurovertin was found to be the most convenient. The inhibition of the ATP-driven transhydrogenase activity was proportional to the inhibition of both the ATPase and the transhydrogenase. Inhibitor-uncoupler titrations showed an increased sensitivity of the coupled reaction towards carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)--an uncoupler that preferentially uncouples localized interactions, according to Herweijer et al. (Biochim. Biophys. Acta 849 (1986) 276-287)--when the primary pump was partially inhibited. However, when the secondary pump was partially inhibited the sensitivity towards FCCP remained unchanged. Similar results were obtained with submitochondrial particles. These results are in contrast to those obtained previously with the ATP-driven reverse electron flow. In addition, the amount of uncoupler required for uncoupling of the ATP-driven transhydrogenase was found to be similar to that required for the stimulation of the ATPase activity, both in reconstituted vesicles and in submitochondrial particles. Uncoupling of reversed electron flow to NAD+ required much less uncoupler. On the basis of these results, it is proposed that, in agreement with the chemiosmotic model, the interaction between ATPase and transhydrogenase in reconstituted vesicles as well as in submitochondrial particles occurs through the delta mu H+. In contrast, the energy transfer between ATPase and NADH-ubiquinone oxidoreductase appears to occur via a more direct interaction, according to the above-mentioned results by Herweijer et al.  相似文献   

9.
P R Maycox  T Deckwerth    R Jahn 《The EMBO journal》1990,9(5):1465-1469
Active accumulation of neurotransmitters by synaptic vesicles is an essential component of the synaptic transmission cycle. Isolated vesicles show energy-dependent uptake of several transmitters by processes which are apparently mediated by a proton electrochemical potential across the vesicle membrane. Although this energy gradient is probably generated by a proton ATPase, the functional separation of ATP cleavage and transmitter uptake activity has only been shown clearly for monoamine transport. We report here that the light-driven proton pump, bacteriorhodopsin, can replace the endogenous proton ATPase in proteoliposomes reconstituted from vesicular detergent extracts. The system shows light-dependent uptake of glutamate with properties very similar to those observed in intact vesicles, e.g. chloride dependence or stimulation by NH4+. Our experiments show that the proton pump and the glutamate transporter are separate entities and provide a powerful tool for further characterization of the glutamate carrier.  相似文献   

10.
11.
Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.  相似文献   

12.
Vesicles were reconstituted from a purified dicyclohexyl-carbodiimide-sensitive ATPase complex (TF0-F1) and phospholipids of a thermophilic bacterium PS3. These vesicles synthesized ATP from ADP and Pi with energy from an electrochemical proton gradient (delta-micronH+) formed by a pH gradient and an electrical potential across their membranes. Maximal ATP synthesis was achieved by incubating the vesicles in malonate at pH 5.5 with valinomycin, and then rapidly transferring them to a solution of pH 8.4 and 150 mM K+. Under these conditons ATP synthesis continued at a decreasing rate for 30 s at 40 degrees. Appreciable formation of ATP (40 to 150 nmol/mg of TF0-F1) occurred at an initial delta-micronH+ above 205 mV and moderate formation at an initial value above 180 mV. ATP hydrolysis by the vesicles produced a delta-micronH+, and the additions of 32Pi and hexokinase to them resulted in 32Pi esterification. Analysis of the time courses of 32Pi esterification and decays of the pH difference and membrane potential, followed using 9-aminoacridine and 8-anilinonaphthalene-1-sulfonate, respectively, as probes, showed a relationship between delta-micronH+ and the rate of ATP synthesis. These results demonstrate that purified TF0-F1 is itself a reversible H+-translocating ATPase of oxidative phosphorylation.  相似文献   

13.
Stable membrane proteins and lipids are convenient to study biomembranes. Two stable proton translocating proteins were purified and reconstituted into vesicles capable of proton translocation. One was a thermostable ATPase (TF0-F1) of thermophilic bacterium PS3 and the other was rhodopsin of Halobacterium halobium. TF0-F1 was composed of a proton pump moiety (TF1) and a proton channel moiety (TF0). TF1 was the first membrane ATPase which was crystallized and reconstituted from its five polypeptides. Like TF0 and TF1, the rhodopsin in purple membrane was highly stable against dissociating agents, acids and alkali. Phospholipids of these biomembranes were also stable and contained no unsaturated fatty acyl groups. The molecular species of the phospholipids of PS3 were determined by mass chromatography. Measurements were made of the difference in electrochemical potential of protons (deltamicronH+) across the membrane of the reconstituted vesicles. The deltamicronH+ attained was 312 mV in TF0-F1 vesciles and was 230 mV in the rhodopsin vesicles. To conclude that electron transport components are not necessary for ATP synthesis in energy yielding biomembranes, two experiments were performed: The ATP synthesis was observed i) on acid-base treatment of TF0-F1 vesicles, and ii) on illumination of the rhodopsin-TF0-F1 vesicles.  相似文献   

14.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

15.
(1) Conditions are described wherein the yeast oligomycin-sensitive adenosine triphosphatase (ATPase) complex can be reconstituted together with phospholipids to yield extremely high rates of ATP-32Pj exchange. The vesicles so formed exhibit proton uptake upon addition of Mg2+-ATP and a relatively slow decay of the proton gradient. (2) The stimulation of ATP-32Pi exchange by valinomycin + K+ reported previously (Ryrie, I. J. (1975) Arch. Biochem. Biophys. 168, 704–711) is apparently not simply due to a diffusion potential. The findings suggest that an electroimpelled, valinomycin-dependent migration of K+ may occur together with the electrogenic movements of protons during ATP hydrolysis and synthesis to establish optimal energized conditions for ATP-32Pi exchange. (3) An artificial oxidative phosphorylation system in the reconstituted vesicles is described: [32P]ATP formation from ADP and 32Pi is shown to be linked with electron flow between external ascorbate and internal ferricyanide where a permeable proton carrier, such as phenazine methosulfate, is used to establish a proton gradient. That the yeast ATPase is capable of net ATP synthesis has also been demonstrated in a light-dependent reaction using ATPase proteoliposomes reconstituted together with bacteriorhodopsin.  相似文献   

16.
Active transport vesicles ofEscherichia coli were shown to possess low levels of energy-independent and energy-dependent nicotinamide nucleotide transhydrogenase activities. Breakage of such vesicles in a French pressure cell resulted in a fraction which had an 8–10-fold increased respiration- and ATP-driven transhydrogenase activities.Stimulation of the ATPase activity in vesicles with Triton X-100 was also paralleled by a 2-fold increase in the energy-independent transhydrogenase.Disruption of the vesicles similarly resulted in increases in the energy-independent transhydrogenase, NADH and succinate oxidase activities but a decrease in succinate supported proline uptake.In the light of these findings, the ‘sidedness’ of the vesicle membranes is discussed.  相似文献   

17.
Glutathione-insulin transhydrogenase (EC 1.8.4.2) catalyzes the inactivation of insulin through scission of the disulfide bonds to form insulin A and B chains. In the liver, the transhydrogenase occurs primarily in the microsomal fraction where most of the enzyme is present in a latent (‘inactive’) state. We have isolated rat hepatic microsomes with latent transhydrogenase activity being an integral part of the vesicles. We have used these vesicles to study the topological location of glutathione-insulin transhydrogenase by investigating the effects of detergents (Triton X-100 and sodium deoxycholate), phospholipase A2 and proteinases (trypsin and thermolysin) on the latent enzyme activity. Treatment of intact vesicles with variable concentrations of detergents and phospholipase A2 resulted in the unmasking of latent transhydrogenase activity. The extent of unmasking of transhydrogenase activity is dependent upon the concentration of detergent or phospholipase used and is accompanied by a parallel release of the enzyme into the soluble fraction. Activation of the transhydrogenase by phospholipase A2 is partially inhibited by bovine serum albumin and the extent of inhibition is inversely proportional to the phospholipase concentration. In intact vesicles, latent transhydrogenase activity is resistant to proteolytic inactivation by both trypsin and thermolysin, while in semipermeable and permeable vesicles these proteases inactivate 60 and 25% of the total transhydrogenase activity, respectively. Together these results indicate that in microsomes transhydrogenase is probably weakly bound to membrane phospholipid components and that most of the enzyme is present on the cisternal surface (i.e., the luminal surface of endoplasmic reticulum) of microsomes. Each detergent and phospholipase apparently unmasks glutathione-insulin transhydrogenase activity through disruption of the phospholipid-enzyme interaction followed by translocation of the enzyme to the soluble (cytoplasmic) fraction and not through increases in substrate availability.  相似文献   

18.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

19.
Plasma membranes were prepared from red beet (Beta vulgaris L.) storage tissue by partition in an aqueous two-phase system. A highly active proton-translocating ATPase was purified from these membranes by lysophosphatidylcholine extraction and glycerol density gradient centrifugation. The ATPase activity was inhibited by vanadate or dicyclohexyl carbodiimide, but was insensitive to azide, nitrate and molybdate at concentrations which inhibit the F1ATPase, the tonoplast ATPase, and acid phosphatase. Inhibition by vanadate was consistent with a non-competitive mechanism, with Ki = 10 microM. The Km for Mg-ATP was about 1 mM, magnesium ions were required, and the activity was stimulated by KCl and by lysophosphatidylcholine. The optimal pH was 6.5. The molecular mass by gel filtration in the presence of 2 g/liter octyl glucoside was 600 kDa, while dodecyl sulfate gel electrophoresis gave a polypeptide molecular mass of 100 kDa. After blotting onto nitrocellulose, the purified enzyme did not bind concanavalin A, although a concanavalin A-binding peptide of the plasma membrane runs to nearly the same position on the gel and showed some tendency to co-purify with the ATPase. Phospholipid vesicles into which the purified ATPase had been incorporated by the freeze-thaw technique showed vanadate-sensitive, ATP-dependent proton uptake. When the ATPase was reconstituted into lipid membranes at high protein to lipid ratios and incubated with ATP, two-dimensionally crystalline arrays of protein molecules were formed.  相似文献   

20.
The effects of fluoride on the tonoplast type ATPase and transport activities associated with sealed membrane vesicles isolated from sugarbeet (Beta vulgaris L.) storage tissue were examined. This anion had two distinct effects upon the proton-pumping vesicles. When ATP hydrolysis was measured in the presence of gramicidin D, significant inhibition (approximately 50%) only occurred when the fluoride concentration approached 50 millimolar. In contrast, the same degree of inhibition of proton transport occurred when the fluoride concentration was about 24 millimolar. Effects on proton pumping at this concentration of fluoride could be attributed to an inhibition of chloride movement which serves to dissipate the vesicle membrane potential. Valinomycin could partially restore ATPase activity in sealed vesicles which were inhibited by fluoride and this restoration occurred with a reduction in the membrane potential. Fluoride demonstrated a competitive interaction with chloride-stimulation of proton transport and inhibited the uptake of radioactive chloride into sealed vesicles. When the vesicles were allowed to develop a pH gradient in the absence of KCl, and KCl was subsequently added, fluoride reduced enhancement of the existing pH gradient by KCl. The results are consistent with a chloride carrier that is inhibited by fluoride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号