首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FK-506 and the structurally related macrolide rapamycin (RAP) were investigated in comparison with cyclosporin A (CsA) for their immunosuppressive effects on murine T cells. All three agents suppressed the proliferation of splenic T cells triggered by lectins or antibodies to CD3 and Ly-6C. FK-506 or CsA also inhibited proliferation, IL-2 production, and IL-2R expression in splenic T cells activated with ionomycin + PMA. However, RAP minimally affected IL-2 production and IL-2R expression in these cells, although it reduced proliferation. Similarly, FK-506 and CsA, but not RAP, suppressed IL-2 production by activated DO.11.10 T hybridoma cells. In such a system, as well as in normal T cells stimulated with high ionomycin concentrations, FK-506 and CsA enhanced proliferation, indicating that they both abrogate negative signals associated with T cell activation. On the contrary, RAP diminished the autonomous proliferation of hybridoma cells, whereas FK-506 and CsA had little effect. The proliferative response induced in D10.G4 cells by IL-1 + ionomycin but not that induced by IL-1 + PMA was sensitive to inhibition by FK-506 and CsA. In contrast, RAP inhibited equally well both types of stimulation. Finally, T cell proliferation driven by IL-2 or IL-4 was found to be relatively resistant to FK-506 or CsA but sensitive to RAP. Altogether, these data demonstrate that FK-506 and CsA alter similar calcium-associated events of T cell activation and block T cell proliferation primarily by suppressing lymphokine production. RAP interferes with a different set of events and inhibits T cells by impairing their response to growth-promoting lymphokines.  相似文献   

2.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

3.
This report compares the ability of cyclosporin A and FK-506 to inhibit human T cell activation triggered via cell surface molecules that utilize different intracellular processes. We stimulated highly purified peripheral blood T lymphocytes with mitogens (Con A and PHA), ionomycin + PMA, or monoclonal antibodies specific for cell surface antigens involved in activation (CD2, CD3, CD28) either in combination with each other or in conjunction with PMA. Using measurements of the proliferative response, IL-2 production, and changes in intracellular Ca2+ ([Ca2+]i), we demonstrate that FK-506 exerts its inhibitory effect on early events of T-cell activation in a manner indistinguishable from that of CsA. An important finding in this study is the strict correlation between those activation pathways that are inhibited by FK-506 and CsA and the requirement that the sensitive pathways induce a measurable rise in [Ca2+]i. This correlation held even for the CD28/CD2 pathway which was previously shown to be calcium-independent; however by employing FACS analysis of [Ca2+]i within individual cells, a subset of cells activated via CD28/CD2 was found to respond with a measurable rise in [Ca2+]i. We also noted that the proliferative response induced by certain stimuli, such as ionomycin + PMA and PHA + PMA, was partially resistant to FK-506 and CsA, while IL-2 production was completely suppressed. The partial FK-506/CsA-resistance of these responses was shown to be determined by the amount of PMA added to the cultures. We conclude from our investigations that FK-506 and CsA inhibit highly similar signal transduction pathways in human T lymphocytes.  相似文献   

4.
A novel macrolide antibiotic, FK-506, isolated from Streptomyces tsukubaensis, has been shown to be a potent immunosuppressive agent in vivo and in vitro. FK-506 shares a number of immunosuppressive properties with the cyclic peptide, cyclosporin A (CsA), although 10 to 100 times more potent in this regard. These similarities suggest that both agents may share a similar mechanism(s) of action at the biochemical level. We have identified a cytoplasmic binding protein for FK-506 in the human T cell line, JURKAT, using [3H]FK-506. The FK-506 binding protein has a mr of 10 to 12 kDa (as determined by gel filtration), is heat stable and does not bind CsA. This contrasts with the CsA binding protein, cyclophilin, in that cyclophilin is heat labile and has a mr of 15 to 17 kDa. Our data suggest that FK-506 binds to a low m.w. protein(s) in JURKAT cells, which is distinct from cyclophilin. This protein may mediate the immunosuppressive effects of FK-506 in T cells. In addition, our results suggest that the immunosuppressive activity of FK-506, as with CsA, is mediated by an intracellular mechanism.  相似文献   

5.
6.
The present study shows the in vitro effects of a novel immunosuppressive agent, FK506, in comparison with cyclosporin A (CsA). FK506 inhibited concanavalin A response and allo-mixed lymphocyte reaction of murine splenic lymphocytes in a dose-dependent manner, and at 40- to 200-fold lower concentrations than CsA. Allo-cytolytic T lymphocyte induction from murine thymocytes was also inhibited by FK506, whereas the ability of cytolytic T lymphocyte to lyse targets was not affected by the agent. Immunosuppressive effects of FK506 were further characterized by using antigen specific-proliferative T lymphocyte clones, BC.21 and KO.6. FK506 inhibited the proliferation of T cell clones stimulated with specific antigens in a dose-dependent manner, and at about 100-fold lower concentrations than CsA. However, cloned T cells, once activated, were scarcely affected by the agent; interleukin-2 (IL-2) driven proliferation of cloned T cells was not inhibited. On the other hand, it was found that FK506 inhibited both IL-2 secretion and IL-2 receptor expression of BC.21 after stimulation with the specific antigen. FK506 also inhibited the proliferation of BC.21 stimulated with phorbol 12-myristate 13-acetate plus calcium ionophore, indicating that it directly affected the signaling pathway downward from the perturbation of the Ti/T3 complex. Finally, it was suggested that FK506 and CsA synergistically inhibited the antigen-driven proliferation of cloned T cells. These results indicate that the novel immunosuppressive agent, FK506, affects T cell activation with mechanisms similar to those of CsA but at considerably lower concentrations.  相似文献   

7.
8.
Extravasation is a critical process for the physiological lymphocyte traffic as well as the hematogenous spread of malignant hemopoietic cells. Here we report that abrogation of calcineurin activity leads to in vitro transendothelial migration and in vivo infiltration of human lymphoma Nalm-6 cells, which are associated with the abrogation of the VLA-4/VCAM-1 mediated pathway. Rapamycin, which can antagonize FK506 but not CsA to inhibit calcineurin, abrogates FK-506 mediated but not CsA mediated inhibition of in vitro transendothelial migration. FK506 may exert its potent immunosuppressive action partly by inhibiting VLA-4/VCAM-1 mediated transendothelial migration or insinuation of lymphoid cells to tissues.  相似文献   

9.
10.
FK-506 is a novel and potent antagonist of T-cell activation and an inhibitor of fungal growth. Its immunosuppressive activity can be antagonized by the structurally related antibiotic rapamycin, and both compounds interact with cytoplasmic FK-506-binding proteins (FKBPs) in T cells and yeast cells. In this paper, we show that FK-506 and two analogs inhibit vegetative growth of Saccharomyces cerevisiae in a fashion that parallels the immunosuppressive activity of these compounds. Yeast mutants resistant to FK-506 were isolated, and at least three complementation groups (fkr1, fkr2, and fkr3) were defined. These fkr mutants show no alteration in their levels of FK-506-binding activity. Likewise, strains carrying null alleles of FKB1 (the yeast gene coding for the FKBP) remain FK-506 sensitive, indicating that depletion of yeast FKBP is not sufficient to confer an FK-506 resistance phenotype, although fkb1 null mutants are resistant to rapamycin. FKB1 does not map to the three fkr loci defined here. These results suggest that yeast FKBP mediates the inhibitory effect of rapamycin but that at least one other protein is directly involved in mediating the activity of FK-506. Interestingly, the ability of FK-506 to rescue a temperature-sensitive growth defect of the fkr3 mutant suggests that the FKR3 gene may define such a protein.  相似文献   

11.
12.
Rapamycin (RAP), tacrolimus (FK506), cyclosporin A, and glucocorticoids represent modern and classic immunosuppressive agents being used clinically. Although these agents have distinct molecular mechanisms of action and exhibit different immunoregulatory profiles, their direct influences on Ag presentation processes remain relatively unknown. Here we report quantitative and qualitative differences among the above four immunosuppressants in their impact on Ag-specific, bidirectional interaction between dendritic cells (DC) and CD4(+) T cells. In the presence of relevant Ag, bone marrow-derived DC delivered activation signals to CD4(+) T cells isolated from the DO11.10 TCR transgenic mice, leading to clonal expansion; secretion of IFN-gamma, IL-2, and IL-4; and surface expression of CD69. Conversely, DO11.10 T cells delivered maturation signals to DC, leading to IL-6 and IL-12 production and CD40 up-regulation. FK506 (10(-10)-10(-8) M) and cyclosporin A (10(-9)-10(-7) M) each blocked efficiently and uniformly all the changes resulting from intercellular signaling in both DC-->T cell and T cell-->DC directions. Dexamethasone (10(-9)-10(-6) M) suppressed all changes, except for CD69 up-regulation, rather incompletely. Remarkably, RAP (10(-10)-10(-8) M) efficiently inhibited DC-induced T cell proliferation and T cell-mediated CD40 up-regulation by DC without abrogating other changes. Interestingly, T cell-independent DC maturation triggered by LPS stimulation was inhibited by dexamethasone, but not by other agents. Our results demonstrate contrasting pharmacological effects of RAP vs calcineurin inhibitors on Ag presentation, thus forming a conceptual framework for rationale-based selection (and combination) of immunosuppressive agents for clinical application.  相似文献   

13.
Stimulation of T cells by the T-cell receptor (TCR)/CD3 complex results in interleukin-2 (IL-2) synthesis and surface expression of the IL-2 receptor (IL-2R), which in turn drive T-cell proliferation. However, the significance of the requirement of IL-2 in driving T-cell proliferation, when TCR stimulation itself delivers potential mitogenic signals, is unclear. We show that blocking of IL-2 synthesis by Cyclosporin A (CsA) suppressed both the Concanavalin A (Con A)- and phorbol myristate acetate (PMA)/ionomycin-induced proliferation of T cells. The latter is also inhibited by anti-IL-2R. Kinetic studies showed that T-cell proliferation begins to become resistant to CsA inhibition by about 12 h and became largely resistant by 18 h of stimulation. PMA, the protein kinase C activator, enhanced Con A-induced T-cell proliferation if added only within first 12 h of stimulation, and not after that. Given the fact that, in the present study, TCR is downregulated within 2 h of Con A stimulation and T cells entered the S phase of cell cycle by about 18 h of stimulation, the above results suggest that TCR stimulation provides the initial trigger to the resting T cells, which allows the cells to traverse the first two third portions of G1 phase of cell cycle and become proliferation competent. IL-2 action begins afterward, delivering the actual proliferation signal(s), allowing the cells to traverse the rest of G1 phase and enter the S phase of the cell cycle.  相似文献   

14.
The effects of rapamycin (RAP) on cell cycle progression of human T cells stimulated with PHA were examined. Cell cycle analysis showed that the RNA content of cells stimulated with PHA in the presence of RAP was similar to that of control T cells stimulated with PHA for 12–24 hr in the absence of the drug. This level was substantially higher than that seen in cells stimulated in the presence of cyclosporin A (CsA), an immunosuppressant known to block cell cycle progression at an early point in the cycle. However, the point in the cell cycle at which RAP acted appeared to be well before the G1/S transition, which occurs about 30–36 hr after stimulation with PHA. In an attempt to further localize the point in the cell cycle where arrest occurred, a set of key regulatory events leading to the G1/S boundary were examined, including p110Rb phosphorylation, which occurred at least 6 hr prior to DNA synthesis, p34cdc2 synthesis, and cyclin A synthesis. In control cultures, p110Rb phosphorylation was detected within 24 hr of PHA stimulation; p34cdc2 and cyclin A synthesis were detected within 30 hr. Addition of RAP to the cultures inhibited each of these events. In contrast, early events, including c-fos, IL-2, and IL-4 mRNAs expression, and IL-2 receptor (p55) expression, were only marginally affected, if at all, in PHA-stimulated T cells. Furthermore, the inhibition of cell proliferation by RAP could not be overcome by addition of exogenous IL-2. These results indicate that RAP blocks cell cycle progression of activated T cells after IL-2/IL-2 receptor interaction but prior to p110Rb phosphorylation and other key regulatory events signaling G1/S transition. © 1993 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
19.
The present study examines the role of the immunosuppressive agents methylprednisolone (MPN) and cyclosporin (Cs)A on IL-4-dependent IgE and IgG production. Addition of optimal amounts of IL-4 (100 U/ml) to cultures of tonsil mononuclear cells resulted in a mean increase in IgG production of 175% and in IgE production of 2460%. Frequency analysis of IgE- and IgG-producing B cells, using an ELISA spot assay, showed parallel increases in both Ig production and numbers of Ig-secreting B cells. IgE production was also enhanced by addition of IL-2 (10 U/ml) and maximal IgE production was obtained with a combination of IL-4 and IL-2. MPN (10(-7) M) and CsA (1 microgram/ml) markedly reduced IL4-induced IgE and IgG production as well as numbers of Ig-secreting cells in a dose-dependent fashion. The suppression of Ig production by the cyclosporins was restricted to the immunosuppressive compounds CsA, CsG, and dihydro-CsD, but not the nonimmunosuppressive drug CsH. Delayed addition of CsA revealed that inhibition was maximal when the drug was added during the first 48 h after addition of IL-4 to the culture. Addition of IL-2 (10 U/ml) partially overcame the inhibition induced by CsA. In coculture experiments, in which separated T or B cells were precultured with the drugs and the cells were then combined and further incubated in the presence of IL-4, the suppressive effects of CsA on IgE production were related to pretreatment of the T but not B cells. The maximum inhibiting effects of MPN were similarly observed when the drug was present in the cultures from the beginning, and addition of IL-2 also partially reversed this inhibition. In contrast to the results with CsA, pretreatment of the B but not T cells with MPN-reduced IgE production. These studies demonstrate that IL-4 increases both numbers of IgE-secreting cells as well as IgE production and CsA and MPN differentially affect the responding T and B cells, resulting in inhibition of Ig production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号