首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the interaction between a microorganism and its host both partners get challenged. Microorganisms have proved to be clever enough to acquire capabilities of hiding from and escaping the consequences of immune surveillance. Malaria parasites are not exceptions to the rule. We review below some of the escape mechanisms used by plasmodia, evasion mechanisms that depend on the life-cycle stage, route of penetration and microenvironment in which the parasites are established inside the host. The extreme diversity and antigenic variation and/or polymorphism of the parasite, the sequestration phenomenon, the induction of blocking antibodies, are only some of them. The understanding of these parasite strategies is of vital importance in the design of the waited-for malaria vaccine.  相似文献   

2.
《Trends in parasitology》2023,39(6):445-460
Malaria is a febrile illness caused by species of the protozoan parasite Plasmodium and is characterized by recursive infections of erythrocytes, leading to clinical symptoms and pathology. In mammals, Plasmodium parasites undergo a compulsory intrahepatic development stage before infecting erythrocytes. Liver-stage parasites have a metabolic configuration to facilitate the replication of several thousand daughter parasites. Their metabolism is of interest to identify cellular pathways essential for liver infection, to kill the parasite before onset of the disease. In this review, we summarize the current knowledge on nutrient acquisition and biosynthesis by liver-stage parasites mostly generated in murine malaria models, gaps in knowledge, and challenges to create a holistic view of the development and deficiencies in this field.  相似文献   

3.
Malaria is one of the exclusion criteria used in selecting tissue donors and the absence of this information can lead to rejection of tissues for transplant. The studies on the malaria parasite have been confined to low dose attenuation of parasites in blood for transfusion purposes. There is no published information relating to the inactivation of malaria parasites with irradiation for the sterilisation of tissues. A dose-surviving parasite population following radiation was replotted using D0 value from a published paper whereby D10 value of 41 Gy was obtained. Calculation of sterilisation dose for achieving SAL 10?6 of malaria parasites demonstrated the effectiveness of the sterilisation dose of 25 kGy being used in tissue banking.  相似文献   

4.
Malaria is one of the most debilitating and life threatening diseases in tropical regions of the world. Over 500 million clinical cases occur, and 2-3 million people die of the disease each year. Because Plasmodium lacks genuine glutathione peroxidase and catalase, the two major antioxidant enzymes in the eukaryotic cell, malaria parasites are likely to utilize members of the peroxiredoxin (Prx) family as the principal enzymes to reduce peroxides, which increase in the parasite cell due to metabolism and parasitism during parasite development. In addition to its function of protecting macromolecules from H(2)O(2), Prx has also been reported to regulate H(2)O(2) as second messenger in transmission of redox signals, which mediate cell proliferation, differentiation, and apoptosis. In the malaria parasite, several lines of experimental data have suggested that the parasite uses Prxs as multifunctional molecules to adapt themselves to asexual and sexual development. In this review, we summarize the accumulated knowledge on the Prx family with respect to their functions in mammalian cells and their possible function(s) in malaria parasites.  相似文献   

5.
Malaria is still a life-threatening infectious disease that continues to produce 2 million deaths annually. Malaria parasites have acquired immune escape mechanisms and prevent the development of sterile immunity. Regulatory T cells (Tregs) have been reported to contribute to immune evasion during malaria in mice and humans, suggesting that activating Tregs is one of the mechanisms by which malaria parasites subvert host immune systems. However, little is known about how these parasites activate Tregs. We herein show that TLR9 signaling to dendritic cells (DCs) is crucial for activation of Tregs. Infection of mice with the rodent malaria parasite Plasmodium yoelii activates Tregs, leading to enhancement of their suppressive function. In vitro activation of Tregs requires the interaction of DCs with parasites in a TLR9-dependent manner. Furthermore, TLR9(-/-) mice are partially resistant to lethal infection, and this is associated with impaired activation of Tregs and subsequent development of effector T cells. Thus, malaria parasites require TLR9 to activate Tregs for immune escape.  相似文献   

6.
Tuteja R 《The FEBS journal》2007,274(18):4670-4679
Malaria is caused by protozoan parasites of the genus Plasmodium and is a major cause of mortality and morbidity worldwide. These parasites have a complex life cycle in their mosquito vector and vertebrate hosts. The primary factors contributing to the resurgence of malaria are the appearance of drug-resistant strains of the parasite, the spread of insecticide-resistant strains of the mosquito and the lack of licensed malaria vaccines of proven efficacy. This minireview includes a summary of the disease, the life cycle of the parasite, information relating to the genome and proteome of the species lethal to humans, Plasmodium falciparum, together with other recent developments in the field.  相似文献   

7.
Malaria parasites invade host cells using actin-based motility, a process requiring parasite actin filament nucleation and polymerization. Malaria and other apicomplexan parasites lack Arp2/3 complex, an actin nucleator widely conserved across eukaryotes, but do express formins, another type of actin nucleator. Here, we demonstrate that one of two malaria parasite formins, Plasmodium falciparum formin 1 (PfFormin 1), and its ortholog in the related parasite Toxoplasma gondii, follows the moving tight junction between the invading parasite and the host cell, which is the predicted site of the actomyosin motor that powers motility. Furthermore, in vitro, the PfFormin1 actin-binding formin homology 2 domain is a potent nucleator, stimulating actin polymerization and, like other formins, localizing to the barbed end during filament elongation. These findings support a conserved molecular mechanism underlying apicomplexan parasite motility and, given the essential role that actin plays in cell invasion, highlight formins as important determinants of malaria parasite pathogenicity.  相似文献   

8.
Waters AP 《Cell》2005,122(2):149-151
The life cycle of the malaria parasite (Plasmodium) is remarkably complex. Malaria parasites must engage in highly specific and varied interactions with cell types of both the mammalian host and the mosquito vector. In this issue of Cell, report detailed molecular insights into an intimate interaction between a malaria parasite protein and its host cell receptor that enables the parasite to invade erythrocytes.  相似文献   

9.

Background

Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80–300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent.

Methodology/Principal Findings

The Ross–Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number () estimated employing Ross–Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals).

Conclusions/Significance

To achieve biological conservation and to eliminate Plasmodium parasites in human populations, the World Health Organization Malaria Eradication Research Agenda should take biodiversity issues into consideration.  相似文献   

10.
Malaria is one of the most life-threatening infectious diseases worldwide. Specific immunity to natural infection is acquired slowly despite a high degree of repeated exposure and rarely continues for a long time even in endemic areas. Malaria parasites have evolved to acquire diverse immune evasion mechanisms that evoke poor immune responses and allow infection of individuals previously exposed. The shrewd schema of malaria parasites also hampers the development of effective vaccines. Furthermore, some of those mechanisms are essential for malaria pathogenesis. In this article, an outline of protective immunity to malaria is given, then strategies used by malaria parasites to evade host immunity, including antigen diversity/polymorphism, antigen variation and total immune suppression, are reviewed. Finally, trials to control malaria based on accumulating insights into the host-parasite relationship are discussed.  相似文献   

11.
Immune responses to asexual blood-stages of malaria parasites   总被引:6,自引:0,他引:6  
The blood stage of the malaria parasite's life cycle is responsible for all the clinical symptoms of malaria. The development of clinical disease is dependent on the interplay of the infecting parasite with the immune status and genetic background of the host. Following repeated exposure to malaria parasites, individuals residing in endemic areas develop immunity. Naturally acquired immunity provides protection against clinical disease, especially severe malaria and death from malaria, although sterilizing immunity is never achieved. Given the absence of antigen processing in erythrocytes, immunity to blood stage malaria parasites is primarily conferred by humoral immune responses. Cellular and innate immune responses play a role in controlling parasite growth but may also contribute to malaria pathology. Here, we analyze the natural humoral immune responses acquired by individuals residing in P. falciparum endemic areas and review their role in providing protection against malaria. In addition, we review the dual potential of cellular and innate immune responses to control parasite multiplication and promote pathology.  相似文献   

12.

Abstract

Background

Congenital malaria, in which infants are directly infected with malaria parasites from their mother prior to or during birth, is a potentially life-threatening condition that occurs at relatively low rates in malaria-endemic regions. It is recognized as a serious problem in Plasmodium falciparum–endemic sub-Saharan Africa, where recent data suggests that it is more common than previously believed. In such regions where malaria transmission is high, neonates may be protected from disease caused by congenital malaria through the transfer of maternal antibodies against the parasite. However, in low P. vivax–endemic regions, immunity to vivax malaria is low; thus, there is the likelihood that congenital vivax malaria poses a more significant threat to newborn health. Malaria had previously been a major parasitic disease in China, and congenital malaria case reports in Chinese offer valuable information for understanding the risks posed by congenital malaria to neonatal health. As most of the literature documenting congenital malaria cases in China are written in Chinese and therefore are not easily accessible to the global malaria research community, we have undertaken an extensive review of the Chinese literature on this subject.

Methods/Principal Findings

Here, we reviewed congenital malaria cases from three major searchable Chinese journal databases, concentrating on data from 1915 through 2011. Following extensive screening, a total of 104 cases of congenital malaria were identified. These cases were distributed mainly in the eastern, central, and southern regions of China, as well as in the low-lying region of southwest China. The dominant species was P. vivax (92.50%), reflecting the malaria parasite species distribution in China. The leading clinical presentation was fever, and other clinical presentations were anaemia, jaundice, paleness, diarrhoea, vomiting, and general weakness. With the exception of two cases, all patients were cured with antimalarial drugs such as chloroquine, quinine, artemether, and artesunate.

Conclusions

The symptoms of congenital malaria vary significantly between cases, so clear and early diagnosis is difficult. We suggest that active surveillance might be necessary for neonates born to mothers with a history of malaria.  相似文献   

13.
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.  相似文献   

14.
15.
Gatton ML  Cheng Q 《PloS one》2010,5(12):e15149
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.  相似文献   

16.
High‐throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up‐to‐date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high‐burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome‐wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13‐R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region‐level complexity‐of‐infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared.  相似文献   

17.
Following the bite of an infective mosquito, malaria parasites first invade the liver where they develop and replicate for a number of days before being released into the bloodstream where they invade red blood cells and cause disease. The biology of the liver stages of malaria parasites is relatively poorly understood due to the inaccessibility of the parasites to sampling during this phase of their life cycle. Here we report the detection in blood and faecal samples of malaria parasite DNA throughout their development in the livers of mice and before the parasites begin their growth in the blood circulation. It is shown that parasite DNA derived from pre-erythrocytic stage parasites reaches the faeces via the bile. We then show that different primate malaria species can be detected by PCR in blood and faecal samples from naturally infected captive macaque monkeys. These results demonstrate that pre-erythrocytic parasites can be detected and quantified in experimentally infected animals. Furthermore, these results have important implications for both molecular epidemiology and phylogenetics of malaria parasites. In the former case, individuals who are malaria parasite negative by microscopy, but PCR positive for parasite DNA in their blood, are considered to be “sub-microscopic” blood stage parasite carriers. We now propose that PCR positivity is not necessarily an indicator of the presence of blood stage parasites, as the DNA could derive from pre-erythrocytic parasites. Similarly, in the case of molecular phylogenetics based on DNA sequences alone, we argue that DNA amplified from blood or faeces does not necessarily come from a parasite species that infects the red blood cells of that particular host.  相似文献   

18.
Malaria is caused by protozoan parasites belonging to the phylum Apicomplexa. These obligate intracellular parasites depend on the successful invasion of an appropriate host cell for their survival. This article is a broad overview of the molecular strategies employed by the merozoite, an invasive form of the malaria parasite, to successfully invade a suitable red blood cell.  相似文献   

19.
Malaria parasites, Plasmodium spp., invade and exploit red blood cells during their asexual expansion within the vertebrate host. The parasite has evolved a suite of adaptive mechanisms enabling optimal exploitation of the host blood cell environment, avoiding host destruction, maintaining a parasite reservoir of infection and producing sexual transmission stages to infect mosquitoes. The highly variable nature of the host blood environment, both over the course of an infection and as a result of other parasitic infections, has selected for the evolution of considerable phenotypic plasticity in the parasite's response to its environment, particularly those phenotypes concerning transmission of the parasite to mosquitoes. With the evolution of human society, human malaria disease is becoming an increasingly urban problem. This imposes different selection pressures on the parasite. The extent to which the parasite is truly plastic over the short term rather than adaptive over the long term will determine the urban epidemiology of malaria and is essential for developing appropriate control methods. Understanding the adaptive nature of malaria parasites is thus vital for anticipating the future visage of urban human malaria.  相似文献   

20.
SUMMARY Malaria parasites often manage to maintain an infection for several months or years in their vertebrate hosts. In humans, rodents and birds, most of the fitness costs associated with malaria infections are in the short initial primary (high parasitaemia) phase of the infection, whereas the chronic phase (low parasitaemia) is more benign to the host. In wild birds, malaria parasites have mainly been studied during the chronic phase of the infection. This is because the initial primary phase of infection is short in duration and infected birds with severe disease symptoms tend to hide in sheltered places and are thus rarely caught and sampled. We therefore wanted to investigate the relationship between the parasitaemia during the primary and chronic phases of the infection using an experimental infection approach. We found a significant positive correlation between parasitaemia in the primary peak and the subsequent chronic phase of infection when we experimentally infected great reed warblers (Acrocephalus arundinaceus) with Plasmodium ashfordi. The reason for this association remains to be understood, but might arise from individual variation in exoerythrocytic parasite reservoirs in hosts, parasite antigenic diversity and/or host genetics. Our results suggest that the chronic phase parasitaemia can be used to qualitatively infer the parasitaemia of the preceding and more severe primary phase, which is a very important finding for studies of avian malaria in wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号