首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The insertion of a particular phi X DNA sequence in the plasmid pACYC177 strongly decreased the capacity of Escherichia coli cells containing such a plasmid to propagate bacteriophage phi X174. The smallest DNA sequence tested that showed the effect was the HindII fragment R4. This fragment does not code for a complete protein. It contains the sequence specifying the C-terminal part of the gene H protein and the N-terminal part of the gene A protein, as well as the noncoding region between these genes. Analysis of cells that contain plasmids with the "reduction sequence" showed that (i) the adsorption of the phages to the host cells is normal, (ii) in a single infection cycle much less phage is formed, (iii) only 10% of the infecting viral single-stranded DNA is converted to double-stranded replicative-form DNA, and (iv) less progeny replicative form DNA is synthesized. The reduction process is phi X174 specific, since the growth of the related G4 and St-1 phages was not affected in these cells. The effect of the recombinant plasmids on infecting phage DNA shows similarity to the process of superinfection exclusion.  相似文献   

2.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

3.
Two infectious forms of bacteriophage phi X 174.   总被引:6,自引:2,他引:4       下载免费PDF全文
Infectious particles with S values of 114 and 132 were isolated from cells infected with bacteriophage phi chi 174. Electron micrographs of the 132S particle revealed a spherical structure with a diameter of about 40 nm. The 114S particle had spikelike projections and a diameter of about 32 nm. The 132S particles could be converted to 114S particles in vitro. However, pulse and pulse-chase experiments indicated no precursor-product relationship between these two particles in vivo.  相似文献   

4.
5.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

6.
7.
8.
9.
Mutational analysis of the bacteriophage phi X174 replication origin   总被引:2,自引:0,他引:2  
Bacteriophage phi X174 mutants within the 30 base-pair replication origin were constructed using oligodeoxynucleotide-directed mutagenesis. A total of 18 viable base substitution mutants at 13 different positions within the origin region were obtained. The majority of these ori mutants have a plaque morphology and burst size comparable to that of wild-type phi X174. Two phi X174 ori mutants with a reduced growth ability spontaneously acquired additional mutations that enhanced the growth rate. The additional mutation was located at the same site as the original mutation or was located in the N-terminal part of the gene A protein. This latter secondary mutation is responsible for a better binding and/or recognition of the gene A protein to the mutated origin. In a Darwinian experiment wild-type phi X174 outgrows all phi X174 ori mutants, indicating the superiority of the wild-type ori sequence for the reproduction of bacteriophage phi 174. Insertions and deletions were constructed at different positions within the phi X174 replication origin cloned in a plasmid. Small insertions and deletions in the A + T-rich spacer region do not inhibit phi X174 gene A protein cleavage in vitro, but severely impair packaging of single-stranded plasmid DNA in viral coats.  相似文献   

10.
The expression of cloned bacteriophage phi X174 lysis gene E was analyzed in minicells of Escherichia coli using two-dimensional gel electrophoresis. Beside the 10-11-kDa protein-E, at least two additional protein bands were detected, associated with the inner membrane, which showed the same isoelectric point as E. To clarify whether these proteins were E-specific, two different antibodies directed against a beta-galactosidase-E' hybrid protein and a synthetic oligopeptide corresponding to the C-terminal end of protein-E were raised. Immunoadsorption studies with anti-peptide-specific antibodies resulted in the detection of protein-E as well as in the detection of proteins of higher molecular weight. Two of these protein bands were positively recognized by anti beta-galactosidase-E' antibodies. The latter protein bands had the same molecular weight as the putative protein-E bands detected by two-dimensional gel electrophoresis indicating that these bands represent protein-E-specific oligomers. These data support the idea that an E-specific oligomeric structure penetrating the inner and outer membrane of E. coli is formed during the lytic action of protein-E.  相似文献   

11.
Stability of bacteriophage phi X174-specific mRNA in vivo.   总被引:8,自引:3,他引:5       下载免费PDF全文
Different-size species of phi X174-specific mRNA's decayed exponentially, with half-lives ranging from 4.5 to 11 min.  相似文献   

12.
Recombination of bacteriophage phi X174 was effectively promoted when the Red function of lambda was supplied by either co-infection with lambda or induction of lambda lysogens. Mutations in red alpha and red beta genes of lambda abolished recombination nearly completely, whereas a mutation in gam gene reduced it only slightly. The Red-promoted recombination of phi X174 occurred in recA, recB, and polA mutants as well as in wild-type strains of Escherichia coli. It was further stimulated when phi X174 mutants were irradiated with UV light before infection.  相似文献   

13.
Bacteriophage phi X 174 gene D product, a protein required for single-stranded DNA synthesis by the phage, has been purified to near homogeneity. The protein is very abundant; approximately 10(5) monomers are present per infected cell when lysis is delayed. The protein has a monomer molecular weight of 15,200 and is normally a tetramer; however, it can form very large aggregates at high concentrations. Amino acid analysis shows an excess of arginine over lysine and a relatively high number of nonpolar residues. The protein carries a net negative charge at neutral pH. The first eight amino acids of the protein sequence have been determined; they are Ser-Gln-Val-Thr-Glu-Gln-Arg-Val. The carboxy-terminal residue is methionine. The protein has not yet been shown to bind directly to any single-stranded DNA; it does not adsorb to denatured calf thymus DNA-cellulose.  相似文献   

14.
The stability of two species of phi X174 polycistronic mRNA in vivo can be altered by mutating sequences existing immediately upstream of a termination site. The wild type phage contains an mRNA stabilizing sequence ((+) sequence), while the same sequence mutated by insertion ((-) sequence) reduces the stability of the mRNAs. These two sequences were cloned at the 3' ends of gene D or gene B of phi X174 in a pBR322 derivative plasmid. The cloned sequences were functional. The (+) sequence stabilized gene B or gene D mRNA; half-lives of these mRNAs were 7 to 8 min. When the (+) sequence is eliminated ((o) sequence) or replaced with the (-) sequence, the half-lives of the mRNA were reduced to about 1 to 2 min. The stabilization of mRNAs caused an increased production of these proteins.  相似文献   

15.
16.
The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This property was used to study morphogenesis and to analyse the signals for initiation and termination of the rolling circle DNA replication in vivo. It is shown that the size of the DNA had a strong effect on the encapsidation by the phage coats and the infectivity of the particle. Termination was analysed by using plasmids with two phi X (+) origins either in the same orientation or in opposite orientation. Both origins were used with equal frequency. Initiation at one origin resulted in very efficient termination (greater than 96%) at the second origin in the case of two origins in the same orientation. When the two (+) origins have opposite orientations, no correct termination was observed. The second origin in the opposite strand effectively inhibits (greater than 98%) the normal DNA synthesis; i.e. the covalently bound A protein present in the replication fork interacts with the (+) origin sequence in the opposite strand.  相似文献   

17.
The synthetic DNA fragment (formula, see text) (corresponding to nucleotides 4299-4314 of the phi X DNA sequence) was cloned into either the AmpR gene or the KmR gene of plasmid pACYC 177. The DNA sequence of the KmR gene around the insertion site was determined by nucleotide sequence analysis of the pACYC 177 FnudII restriction DNA fragment N6 (345 b.p.). Of five selected plasmid DNAs, which contained inserted DNA sequences in the antibiotic resistance genes, the nucleotide sequences at and around these insertions were determined. Two recombinant plasmids (pFH 704 and pFH 614) contain the hexadecamer sequence in tandem (tail-to-tail and tail-to-head). In the recombinant plasmids pFH 812, pFH 903 and pFH 807 the DNA sequence homology with the phi X origin region was 14 (No. 4300-4313), 16 (No. 4299-4314) and 20 nucleotides (No. 4299-4318), respectively. None of the supercoiled recombinant plasmid DNAs is nicked upon incubation with phi X gene A protein. Moreover, the recombinant plasmid RFI DNAs cannot act as substitutes for phi X RFI DNA in the in vitro (+) strand synthesizing system. It has been shown earlier that single-stranded DNA, which contains the decamer sequence CAACTTGATA is efficiently nicked by the phi X gene A protein. The present results indicate that for nicking of double-stranded supercoiled DNA nucleotide sequence homology with the phi X origin region of more than 20 nucleotides is required. These results suggest a model for initiation of phi X RF DNA replication, which involves the presence of the recognition sequence CAACTTGATA of the phi X gene A protein as well as a second specific nucleotide sequence which is required for the binding of the phi X gene A protein. This binding causes local unwinding of the DNA double helix and exposure of the recognition sequence in a single-stranded form, which then can be nicked by phi X gene A protein.  相似文献   

18.
The replication of bacteriophage phi X 174 replicative-form DNA has been studied by structural analysis of pulse-labeled replicative-intermediate molecules. Such intermediates were identified by pulse-labeling with [13H]thymidine and separated into four major fractions (A, B, C, and D) in a propidium diiodide-cesium chloride buoyand density gradient. Sedimentation analysis of each of these fractions suggests the following features of phi X replicative-form DNA replication in vivo. (i) At the end of one cycle of replication, one daughter replicative form (RFII) contains a nascent plus (+) strand of the unit viral length, and the other daughter RFII contains small fragments of nascent minus (-) strand. (ii) Asymmetry is also associated with production of the first supercoiled RFI after addition of pulse label in that only the minus strand becomes radioactive. (iii) A supercoiled DNA (RFI') seems to occur in vivo. This DNA is observed at a position of greater density in a propidium diiodide-cesium chloride buoyant density gradient than normal RFI. (iv) A novel DNA component is observed, at a density greater than RFI, which releases, in alkali, a plus strand longer (1.5 to 1.7 times) than the unit viral length. These results are discussed in terms of the possible sequence of events in phi X 174 replicative-form replication in vivo.  相似文献   

19.
Features of inactivation, repair and concomitant mutagenesis of hydroxylamine-treated phi X174 bacteriophages are reported here. (1) For reasons unknown, the nonsense phage mutants tested here were far more sensitive to hydroxylamine than the wild-type phage. In contrast, the sensitivities of these same phi X174 mutants to UV-irradiation are indistinguishable. (2) Hydroxylamine-treated amber phages mutated to ochre but not to wild-type particles, i.e., G leads to A transition events were recovered. (3) The repair of phi X174 phages from hydroxylamine-induced damage was error-prone, but unlike UV damage, did not require protein synthesis de novo. Possible mechanisms of these novel features are discussed.  相似文献   

20.
Fidelity of replication of bacteriophage phi X174 DNA in vitro and in vivo   总被引:12,自引:0,他引:12  
Seven different revertants of bacteriophage phi X174am16 (AB5276G leads to T) have been isolated and the nature of the reversions determined by sequencing their DNA. The revertants each differ from am16 by just a single base substitution. These may be distinguished with varying degrees of ease by characteristic temperature sensitivities of growth. This has facilitated the determination of the frequency at which DNA polymerase III catalyses different types of substitution mutations in copying phi X174 DNA in vitro and in vivo. During the replicative form (RF) leads to single-stranded (SS) stage of replication in vitro, four different revertants may be readily produced according to well-defined rate laws on biasing the concentrations of dNTPs. Transversion mutations are found to be formed predominantly by purine x purine mismatching, whilst transitions are formed predominantly by G x T mismatching. The substitutions via G x T and G x A mismatches are estimated to occur at similar frequencies in vivo. The two most common revertants isolated in vivo, however, are not those readily produced during the RF leads to SS stage in vitro but are those produced on purine x purine mismatching in the SS leads to RF stage. The accuracy of the DNA polymerase in vitro appears to be similar to that in this stage in vivo. However, the overall accuracy of the RF leads to SS replication in vivo is more accurate than predicted from the measurements of the accuracy in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号