首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过人胚胎干细胞(human embryonic stem cells,hESC)体外分化方法和畸胎瘤形成可以分化获得多种成体细胞.但目前尚不清楚是否可以从hESCs畸胎瘤中分离某些特异性细胞.通过体外筛选方法,有效地从hESCs畸胎瘤中分离出神经前体细胞(neural progenitor cells,NPCs)和间充质干细胞(mesenchymal stem cells,MSCs).这种hESCs畸胎瘤来源的NPCs和MSCs与体内神经前体细胞和间充质干细胞有着相似的分子标记和特性,并具有进一步的分化潜能——分别可以诱导成为神经元、神经胶质细胞、脂肪细胞和骨骼细胞等.根据人胚胎干细胞畸胎瘤中含有不同分化阶段的外胚层、中胚层和内胚层的组织或细胞,认为人胚胎干细胞畸胎瘤可以作为另一个细胞来源以获取多种(包括人胚胎干细胞体外分化难以得到的)各种前体/干细胞和终末分化细胞.  相似文献   

2.
人胚胎干细胞向神经上皮祖细胞的诱导分化   总被引:1,自引:0,他引:1  
人胚胎干细胞具有自我更新和多向分化潜能,是研究早期胚胎发育和细胞替代治疗的重要细胞来源.采用一种与小鼠成纤维细胞共培养的方法进行人胚胎干细胞的神经诱导,可产生高纯度的神经上皮祖细胞,其神经上皮特异性基因的表达有一定的时空性;诱导生成的神经上皮祖细胞具有增殖潜能并可分化为神经元和星型胶质细胞,是潜在的神经干细胞.人胚胎干细胞来源的神经上皮祖细胞为研究神经发育和神经诱导提供了新材料,也为神经系统疾病的细胞替代治疗提供了新的细胞来源.  相似文献   

3.
We studied the development of stem/progenitor cells of the human brain transplanted in the adult rat brain after expansion in an in vitrotissue culture. It was preliminarily shown by the immunological methods that the stem cells grown in a medium with growth factors formed neurospheres, which were heterogenous and contained both stem and progenitor cells of the human brain. The cells were implanted in the hippocampus, striatum, or lateral ventricle of the rat brain as a suspension or aggregates (neurospheres) and their behavior and differentiation were studies within 10, 20, and 30 days using the morphological and immunochemical methods. The cultured cells of the human brain continued their development in the rat brain, migrated, and formed neurons and astrocytes. The white mater fibers, lateral ventricle wall, and perivascular spaces served as the main pathways of migration. The neuronal differentiation was shown by staining with antibodies to -tubulin III, neurofilaments-70, and calbindin. Some growing nerve cells had long processes with growth cones. At the same time, some transplanted cells retained the undifferentiated state within one month after the implantation, as shown by the vimentin expression.  相似文献   

4.
5.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.  相似文献   

6.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.  相似文献   

7.
HCMV感染抑制人海马神经干细胞分化   总被引:1,自引:0,他引:1  
研究HCMV感染对体外培养的人海马源性神经干细胞(Neural stem cells,NSCs)分化的影响。体外分离、培养人海马NSCs,应用免疫荧光方法检测其NSCs标记物-巢蛋白(Nestin)的表达。10%胎牛血清诱导NSCs贴壁分化,同时用MOI为5的HCMV AD169株感染NSCs,7d后使用激光共聚焦显微镜免疫荧光方法检测Nestin、神经胶质纤维酸性蛋白(GFAP)和HCMV即刻早期蛋白(IE)的表达,计算阳性细胞比率。本实验所培养的细胞(4~6代)95±8%表达Nestin;分化诱导7d后,感染组86±12%细胞表达IE,未感染组和感染组Nestin阳性率分别为50±19%和93±10%(t=6.03,P<0.01),GFAP阳性细胞率分别为81±11%和55±17%(t=3.77,P<0.01)。以上结果表明分化过程中的NSCs是HCMV的容许细胞;HCMV感染可以抑制NSCs的分化。  相似文献   

8.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.  相似文献   

9.
不对称分裂是干/祖细胞发育分化中的基本过程,膜相关蛋白Numb在其中发挥重要作用.Numb极性分布于细胞一侧,在干/祖细胞有丝分裂时不对等分配至两个子代细胞,使子代细胞产生不同分化命运.如一个保持在干/祖细胞状态,而另一个发育为神经元,这一过程主要通过抑制Notch信号通路发挥作用.近年在哺乳动物中的研究中发现,高强度Notch信号又能够反馈抑制Numb活性.Numb具有维持神经干/祖细胞增殖与促进分化的双重作用,Numb的命运决定作用还与Shh信号通路和p53蛋白等相关.另外,Numb参与调控细胞的粘连、迁移以及神经元轴突的分支与延长.本文主要对Numb在果蝇及哺乳动物神经干/祖细胞中的定位以及其在决定细胞命运和分化中的调控作用进行综述.  相似文献   

10.
Retinal degenerative diseases lead to blindness with few treatments. Various cell‐based therapies are aimed to slow the progression of vision loss by preserving light‐sensing photoreceptor cells. A subretinal injection of human neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) rat model of retinal degeneration has aided in photoreceptor survival, though the mechanisms are mainly unknown. Identifying the retinal proteomic changes that occur following hNPC treatment leads to better understanding of neuroprotection. To mimic the retinal environment following hNPC injection, a co‐culture system of retinas and hNPCs is developed. Less cell death occurs in RCS retinal tissue co‐cultured with hNPCs than in retinas cultured alone, suggesting that hNPCs provide retinal protection in vitro. Comparison of ex vivo and in vivo retinas identifies nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) mediated oxidative response signaling as an hNPC‐induced pathway. This is the first study to compare proteomic changes following treatment with hNPCs in both an ex vivo and in vivo environment, further allowing the use of ex vivo modeling for mechanisms of retinal preservation. Elucidation of the protein changes in the retina following hNPC treatment may lead to the discovery of mechanisms of photoreceptor survival and its therapeutic for clinical applications.  相似文献   

11.
近年来,关于胶质细胞有许多令人惊奇的发现。其中最令人感兴趣的是部分胶质细胞在体内外都表现出神经千细胞/祖细胞的特性,在适当条件下能分化成神经元、星形胶质细胞和/或少突胶质细胞。不仅存在于非哺乳类脊椎动物整个生命周期的放射胶质显示出这一特性,存在于成年哺乳动物脑室下区和颗粒下层的星形胶质细胞也是如此。在体外培养中,部分胶质细胞具有形成多潜能神经球的能力。在体内,胶质细胞充当前驱细胞时的命运受到细胞间相互作用、细胞因子、血脉系统、胞外基质以及基膜等所构建的微环境的影响。胶质细胞的这些特性将对神经修复产生深远影响。  相似文献   

12.
13.
Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.  相似文献   

14.
介绍造血干 / 祖细胞的体外培养和扩增取得的显著进展 :包括各种生物反应器的应用 ,三维培养系统的建立。扩增后的造血细胞在动物模型和临床上的应用已取得了初步成效。  相似文献   

15.
16.
The total cell expansion of human umbilical cord blood (CB) and adult bone marrow (BM) CD34+-enriched cells cultured in supplemented serum-free media, either over irradiated human feeder layers or in stroma-free systems, were characterized by a simple kinetic model using only two parameters: the specific cell expansion rate, mu, and the death rate constant, k(k). Both CB and BM cells can expand at approximately the same rate (0.21 day(-1)) in this culture system however, cell death depends on the presence of stroma and the environment in which the cells are cultured.  相似文献   

17.
过去认为神经元受损伤后难以再生.近年发现神经干细胞(neuralstemcells,NSC)主要存在于胚胎和成熟个体的中枢神经系统(CNS)中,具有增殖和分化的潜能.NSC成为神经学科的热点课题,是神经发育和疾病研究的重要平台,作为新生神经细胞的“种子”,它为治疗缺血缺氧性脑病提供了新策略,尤其是中枢神经细胞的治疗性再生和基因治疗.对NSC的发育、组织学特点、增殖分化的调控及治疗前景进行了阐述.  相似文献   

18.
人胚胎干细胞具有广泛的研究前景,建立一个理想的人胚胎干细胞培养系统是利用它的前提.较详细地对目前关于人胚胎干细胞培养体系的研究进展、一些细胞因子对人胚胎干细胞的作用和影响以及体外长期培养对人胚胎干细胞核型的影响进行了综述.  相似文献   

19.
神经干细胞克隆球中干细胞的比例变化   总被引:3,自引:0,他引:3  
为了定量研究神经干细胞体外产生的克隆结构“neurospheres”中干细胞的比例变化,利用无血清培养、细胞克隆培养技术及免疫细胞化学染色方法,观察不同代数神经干细胞克隆球中nestin阳性细胞的比例。发现随着传代次数增加,克隆球中nestin阳性细胞的比例也在显著减少(P<0.001)。提示在体外培养体系中,形成的克隆球具有异质性,并且在不同代数间神经干细胞的比例也显著不同。  相似文献   

20.
该研究探讨人尿源性干细胞(human urine-derived stem cells,hUSCs)及人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)的生物学性状差异。分离培养hUSCs及hUC-MSCs,显微镜下观察细胞形态,流式细胞术检测干细胞表面标记物,锥虫蓝拒染实验及克隆形成实验检测细胞增殖能力,划痕实验及Transwell迁移实验检测细胞迁移能力,碱性磷酸酶(alkaline phosphatase,ALP)染色、茜素红染色、油红O染色及阿利新蓝染色评估多向分化潜能。hUSCs为米粒状贴壁生长细胞,hUC-MSCs为长梭形贴壁细胞,呈旋涡状排列生长,两种细胞表型分析相似,均表达多种间充质干细胞标志物,但CD24在hUC-MSCs表达阳性,而CD105在hUSCs表达阳性。hUC-MSCs的增殖及迁移能力优于hUSCs,但后者的克隆形成能力更强。hUSCs及hUCMSCs都具有成骨、成脂、成软骨分化能力,hUC-MSCs的成骨能力强而hUSCs的成脂能力强。该研究成功分离培养出增殖能力强并具有多向分化潜能的hUSCs,该细胞与hUC-MSCs相比具有相似的生物学性状,可作为再生医学自体移植的理想种子细胞来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号