首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colonic tissue was examined from normal (control) rats and azoxymethane- (carcinogen-) treated animals. Tumour-bearing colons from azoxymethane-treated rats were divided into malignant and non-malignant areas. Mucosal cells were prepared from the three types of colonic tissue and then examined for DNA and protein content and for the activities of ten enzymes involved in sialic acid metabolism. Enzyme activities were related to either the protein or the DNA content of fractions. The DNA content of cell homogenates was significantly different between tumour and non-malignant tissue and between both these tissues and normal mucosa. The protein content of the 100000 X g membrane pellet and supernatant fraction did not vary significantly between normal and non-malignant material but both these tissues differed significantly from tumour tissue. Significant variation between normal control and tumour tissue was detected at all levels of sialic acid metabolism, including N-acetylhexosamine interconversion and phosphorylation, sialic acid formation and activation, CMP-NeuAc breakdown and transfer and sialic acid release from glycoconjugates. The results indicate that major changes at all levels of sialic acid metabolism are associated with malignancy in rat colonic mucosa. Some of these changes are apparent in non-malignant mucosa and may reflect a pre-malignant state.  相似文献   

2.
Liposomes were used to determine whether gangliosides containing certain structurally defined analogues of sialic acid could inhibit activation of the alternative pathway of human C. Gangliosides containing sialic acid residues with modifications in the N-acetyl group, carboxyl group, or polyhydroxylated tail were either isolated from natural sources or prepared by chemical modification of the native sialic acid structure. Sialic acid lost more than 90% of its inhibitory activity after removal of just the C9 carbon from the polyhydroxylated tail. Sialic acid was also unable to inhibit activation after converting the carboxyl group to a hydroxymethyl group. Galactose oxidase/NaB3H4 treatment of liposomes containing gangliosides with native or modified sialic acid residues confirmed that neither modification altered the amount of gangliosides exposed at the liposome surface. Changing the N-linked acetyl group to a glycolyl group had no effect on the inhibitory activity of sialic acid. These data further define the structural features of sialic acid that are important in regulation of alternative pathway activation. Both the C9 carbon of the polyhydroxylated tail and the carboxyl group are essential for this function; whereas, the N-linked acetyl group may be modified without loss of activity.  相似文献   

3.
Red cells from the giant salamander Amphiuma means are shown to contain sialic acid. The amount removed by the action of neuraminidase is equal to that released by acid hydrolysis, indicating that all of the sialic acid is present on the outer surface of the plasma membrane. These cells have a negative electrophoretic mobility and 100% enzymatic removal of sialic acid results in a 40% reduction in the mobility, suggesting that either a fraction of the sialic acid carboxyl groups are unavailable to the action of external electric fields, or other negatively charged groups contribute to the surface charge. A further reduction in mobility of normal and sialic acid-free cells is caused by an increased extracellular calcium concentration. The negative groups affected by calcium are most likely to be phosphate groups, since the isoelectric point of the cells is found to lie between the pK values for H2PO-4 groups and the carboxyl groups of sialic acid. Membrane potentials of single cells, from which 80% or more of the total sialic acid had been removed, were identical to those measured in normal cells, confirming that sialic acid plays little, if any, direct role in the maintenance of membrane potentials and ionic permeabilities.  相似文献   

4.
Red cells from the giant salamander Amphiuma means are shown to contain sialic acid. The amount removed by the action of neuraminidase is equal to that released by acid hydrolysis, indicating that all of the sialic acid is present on the outer surface of the plasma membrane. These cells have a negative electrophoretic mobility and 100% enzymatic removal of sialic acid results in a 40% reduction in the mobility, suggesting that either a fraction of the sialic acid carboxyl groups are unavailable to the action of external electric fields, or other negatively charged groups contribute to the surface charge. A further reduction in mobility of normal and sialic acid-free cells is caused by an increased extracellular calcium concentration. The negative groups affected by calcium are most likely to be phosphate groups, since the isoelectric point of the cells is found to lie between the pK values for H2PO4 groups and the carboxyl groups of sialic acid. Membrane potentials of single cells, from which 80% or more of the total sialic acid had been removed, were identical to those measured in normal cells, confirming that sialic acid plays little, if any, direct role in the maintenance of membrane potentials and ionic permeabilities.  相似文献   

5.

Background  

It is known that tissue and serum sialic acid levels may be altered by malignant transformation. In this study, sialic acid levels were determined in bronchoalveolar lavage fluid (BAL) and serum in two groups of patients with lung cancer and non-malignant diseases of the lung.  相似文献   

6.
Cytochalasin B and the sialic acids of Ehrlich ascites cells   总被引:3,自引:0,他引:3  
The effect of cytochalasin B (CB) on the electrophoretic mobility and density of ionized sialic acid groups at the surface of Ehrlich ascites cells was examined together with a biochemical assay of the total sialic acid content of treated and control cells. Sialic acid assays indicated that CB-treated cells had a greater amount of total sialic acid and sialic acid sensitive to neuraminidase than control cells/cell. Equal amounts of sialic acid were removable by neuraminidase treatment from control cells and cells pretreated with neuraminidase and subsequently cultured with CB. The electrophoresis results showed a decrease in electrophoretic mobility in the presence of CB which could be reversed by growth in CB-free medium. Neuraminidase treatment did not make a significant additional reduction in the mobility of CB-treated cells. CB also prevented the recovery of electrophoretic mobility of neuraminidase treated cells. The results suggest that while CB does not inhibit sialic acid synthesis, it does alter the expression of ionized sialic acid groups at the electrokinetic surface. CB-containing culture media could be re-utilized several times suggesting that CB is not significantly bound or metabolized by Ehrlich ascites cells.  相似文献   

7.
Sialic acid, as a terminal saccharide residue on cell surface glycoconjugates, plays an important role in a variety of biological processes. In this study, we investigated subclones of the human B lymphoma cell line BJA-B for differences in the glycosylation of cell surface glycoconjugates, and studied the functional implications of such differences. With respect to the expression level of most of the tested B cell-associated antigens, as well as the presence of penultimate saccharide moieties on oligosaccharide chains, subclones were phenotypically indistinguishable. Marked differences among subclones, however, were found in the overall level of glycoconjugate sialylation, involving both alpha-2,6 and alpha-2,3-linked sialic acid residues. Accordingly, subclones were classified as highly- (group I) or hyposialylated (group II). The function of two sialic acid-dependent receptor-mediated processes is correlated with the sialylation status of BJA-B subclones. Susceptibility to and binding of the B lymphotropic papovavirus (LPV) was dependent on a high sialylation status of host cells, suggesting that differential sialylation in BJA-B cells can modulate LPV infection via its alpha-2,6-sialylated glycoprotein receptor. CD95-mediated apoptosis, induced by either the human CD95 ligand or a cytotoxic anti-CD95 monoclonal antibody, was drastically enhanced in hyposialylated group II cells. An increase in endogenous sialylation may be one antiapoptotic mechanism that converts tumor cells to a more malignant phenotype. To our knowledge, this is the first report demonstrating that differential sialylation in a clonal cell line may regulate the function of virus and signal-transducing receptors.  相似文献   

8.
It has been known for over a decade that sialidase (neuraminidase) treatment could substantially enhance the capacity of resting B cells to stimulate the proliferation of allogeneic and antigen specific, syngeneic T cells. Thus, cell-surface sialic acid was implicated as a potential modulator of immune cell interaction. However, little progress has been made in either identifying explicit roles for sialic acid in this system or in hypothesizing mechanisms to explain the "neuraminidase effect." Here we show for the first time that cell surface sialic acid on medium incubated B cells blocks access to costimulatory molecules on the B cell surface, and that this is the most likely explanation for the neuraminidase effect. Further, we show that it is likely to be upregulation of ICAM-1 and its subsequent engagement of LFA-1 rather than loss of cell surface sialic acid that in part regulates access to CD86 and other costimulatory molecules. However, we cannot exclude a role for CD86-bound sialic acid on the B cell in modulating binding to T cell CD28. Because sialidase treatment of resting B cells but not resting T cells enables T cell activation, we suggest that sialidase treatment may still be an analogue for an authentic step in B cell activation, and show that for highly activated B cells (activated with polyclonal anti-IgM plus INF-gamma) there is specific loss 2, 6-linked sialic acid. Potential roles for sialic acid in modulating B cell/T cell collaboration are discussed.  相似文献   

9.
N-Acetylneuraminic acid is the most prominent sialic acid in eukaryotes. The structural diversity of sialic acid is exploited by viruses, bacteria, and toxins and by the sialoglycoproteins and sialoglycolipids involved in cell-cell recognition in their highly specific recognition and binding to cellular receptors. The physiological precursor of all sialic acids is N-acetyl D-mannosamine (ManNAc). By recent findings it could be shown that synthetic N-acyl-modified D-mannosamines can be taken up by cells and efficiently metabolized to the respective N-acyl-modified neuraminic acids in vitro and in vivo. Successfully employed D-mannosamines with modified N-acyl side chains include N-propanoyl- (ManNProp), N-butanoyl- (ManNBut)-, N-pentanoyl- (ManNPent), N-hexanoyl- (ManNHex), N-crotonoyl- (ManNCrot), N-levulinoyl- (ManNLev), N-glycolyl- (ManNGc), and N-azidoacetyl D-mannosamine (ManNAc-azido). All of these compounds are metabolized by the promiscuous sialic acid biosynthetic pathway and are incorporated into cell surface sialoglycoconjugates replacing in a cell type-specific manner 10-85% of normal sialic acids. Application of these compounds to different biological systems has revealed important and unexpected functions of the N-acyl side chain of sialic acids, including its crucial role for the interaction of different viruses with their sialylated host cell receptors. Also, treatment with ManNProp, which contains only one additional methylene group compared to the physiological precursor ManNAc, induced proliferation of astrocytes, microglia, and peripheral T-lymphocytes. Unique, chemically reactive ketone and azido groups can be introduced biosynthetically into cell surface sialoglycans using N-acyl-modified sialic acid precursors, a process offering a variety of applications including the generation of artificial cellular receptors for viral gene delivery. This group of novel sialic acid precursors enabled studies on sialic acid modifications on the surface of living cells and has improved our understanding of carbohydrate receptors in their native environment. The biochemical engineering of the side chain of sialic acid offers new tools to study its biological relevance and to exploit it as a tag for therapeutic and diagnostic applications.  相似文献   

10.
Transmission and scanning electron microscopy and histochemical and biochemical methods were used to investigate differences in cell structure and cell surface properties between the strain-specific TA3- St and nonstrain-specific TA3-Ha ascites sublines of the TA3 murine mammary adenocarcinoma. The TA3-St subline is lethal only to the syngeneic strain A mouse (the strain of origin), whereas the TA3-Ha subline is lethal even to foreign species. In contrast to the TA3-St cell surface, which has numerous folds and irregular microprojections, the TA3-Ha cell has abundant long microvilli of uniform dimensions. An extensive cell surface coat which resembles the "fuzz" coat found on microvilli of normal epithelium was present on the TA3-Ha, but not on the TA3-St cells. After routine fixation, the surface coat of the TA3- Ha cell usually appeared as a filamentous network extending 30-50 nm from the plasmalemma; occasionally, longer filamentous or rod-like structures were found extending 200-400 nm from the plasmalemma. The cell coat material was more extensive on the microvilli than on the intermicrovillous membranes. Free virus-like particles associated with TA3-Ha cells have a similar-appearing surface coat on their outer membranes. The density of surface anionic sites, determined with polycationic ferritin, was greater on the TA3-Ha than on the TA3-St cell surface, consistent with the presence at the TA3-Ha cell surface of several-fold more neuraminidase-susceptible sialic acid groups. The observed surface features of the nonstrain-specific TA3-Ha cell, in comparison to the strain-specific TA3-St cell, are consistent with the suggestion that sialic acid-rich glycoproteins at the TA3-Ha cell surface mask histocompatibility antigens and enhance the ability of malignant cells to invade foreign species.  相似文献   

11.
1. It is suggested that specific carbohydrate side-chains of membrane glycoproteins are the sites for cell recognition or adhesion when the terminal sugar, sialic acid, is absent. 2. It is suggested that sialic acid plays a ‘protective’ or ‘blocking’ role in cell interactions so that addition of sialic acid to asialo side-chains converts them to forms inactive for recognition. This principle of ‘blocking’ by sialic acid has been observed in other situations as in covering tumour antigens and in protecting glycoproteins from uptake by the liver. It is here extended to cell-cell adhesions. 3. It is to be expected that specific ‘protective’ actions of sialic acid in membrane-bound glycoproteins will be difficult to detect. As a charged residue, sialic acid is likely to have a strong influence both on the glycoproteins on which it is borne and on their interactions with each other at the cell surface. Removal of sialic acid by enzymes could therefore perturb the structure of the cell surface in several ways and so obscure the ‘protective’ effects of sialic acid. Sialic acid is therefore suggested to have a structural role also. 4. Evidence is assembled in favour of a model in which sialysation of specific adhesive receptors affects the social behaviour of cells. This may be an effect associated with growing cells since the contact properties of mitotic cells (and populations rich in dividing cells) are decreased by the increased sialysation of receptors. One of the factors associated with malignant behaviour could be that adhesive receptors are permanently blocked by sialic acid. 5. A schematic representation of some of the points is given in Fig. 4.  相似文献   

12.
The selective ligation of hydrazine and amino-oxy compounds with carbonyls has gained popularity as a detection strategy with the recognition of aniline catalysis as a way to accelerate the labeling reaction in water. Aldehydes are a convenient functional group choice since there are few native aldehydes found at the cell surface. Aldehydes can be selectively introduced into sialic acid containing glycoproteins by treatment with dilute sodium periodate. Thus, the combination of periodate oxidation with aniline-catalyzed ligation (PAL) has become a viable method for detection of glycoconjugates on live cells. Herein we examine two fluorescent nitrobenzoxadiazole dyes for labeling of glycoproteins and cell surface glycoconjugates. We introduce a novel 4-aminooxy-7-nitro-benz-[2,1,3-d]-oxadiazole (NBDAO) (5) fluorophore, and offer a comparison to commercial dyes including the known 4-hydrazino-7-nitro-benz-[2,1,3-d]-oxadiazole (NBDH) (2) and Bodipy FL hydrazide. We confirm specificity for sialic acid moieties and that both dyes are suitable for in vitro and in vivo labeling studies using PAL and fluorescence spectroscopy. The dyes examined here are attractive labeling agents for microscopy, as they can be excited by a 488 nm laser line and can be made in a few synthetic steps. These carbonyl-reactive chromophores provide a one step alternative to avidin-biotin labeling strategies and simplify the detection of sialic acid in cells and glycoproteins.  相似文献   

13.
The circular dichroic spectra of the acid and sodium salt forms of several sialic acid-containing homo- and hetero-polysaccharides have been measured. The spectra are shown to be influenced by the state of ionization of the carboxyl groups contained in the sialic acid, the location within the individual sialic acid residues of the inter-saccharide linkages, and changes in the configuration of hydroxyl groups remote to the carboxyl group of the sialic acid.  相似文献   

14.
Reovirus induces apoptosis in cultured cells and in vivo. Genetic studies indicate that the efficiency with which reovirus strains induce apoptosis is determined by the viral S1 gene, which encodes attachment protein sigma1. However, the biochemical properties of sigma1 that influence apoptosis induction are unknown. To determine whether the capacity of sigma1 to bind cell surface sialic acid determines the magnitude of the apoptotic response, we used isogenic reovirus mutants that differ in the capacity to engage sialic acid. We found that T3SA+, a virus capable of binding sialic acid, induces high levels of apoptosis in both HeLa cells and L cells. In contrast, non-sialic-acid-binding strain T3SA- induces little or no apoptosis in these cell types. Differences in the capacity of T3SA- and T3SA+ to induce apoptosis are not due to differences in viral protein synthesis or production of viral progeny. Removal of cell surface sialic acid with neuraminidase abolishes the capacity of T3SA+ to induce apoptosis. Similarly, incubation of T3SA+ with sialyllactose, a trisaccharide comprised of lactose and sialic acid, blocks apoptosis. These findings demonstrate that reovirus binding to cell surface sialic acid is a critical requirement for the efficient induction of apoptosis and suggest that virus receptor utilization plays an important role in regulating cell death.  相似文献   

15.
The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(alpha2-6) galactose(beta1-4)glucose or sialic acid(alpha2-3)galactose(beta1-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.  相似文献   

16.
Intracellular trafficking of cell surface sialoglycoconjugates   总被引:9,自引:0,他引:9  
Recent reports have suggested that the majority of the molecular traffic through the Golgi apparatus is comprised of recycling, rather than newly synthesized, molecules. To evaluate the importance of this recycling pathway in greater detail, we examined the internalization and recycling of cell surface glycoproteins on EL-4 cells, a murine T-cell lymphoma, using sialic acids as covalent markers. Sialic acids were removed from the surface of living cells by exhaustive treatment with Vibrio cholerae sialidase at 4 degrees C and shown to be derived primarily from glycoproteins (93%), with only a small amount from glycolipids (7%). Cells were recultured at 37 degrees C over time and monitored for the resialylation of the cell surface using a sensitive high pressure liquid chromatography adaptation of the thiobarbituric acid assay for sialic acids. The return of sialic acid to the cell surface was found to be contingent upon de novo protein synthesis indicating that the bulk of plasma membrane sialoglycoconjugates do not recycle to an endogenous sialyltransferase-containing compartment for oligosaccharide reprocessing. Identical results were found for K562 cells, a human erythroleukemia cell line. The movement of specific glycoproteins was followed using the enzyme rat liver alpha 2-6Gal beta 1-4GlcNAc sialyltransferase together with CMP-[3H]NeuAc as an impermeant probe of the cell surface. Surface sialoglycoproteins were internalized slowly, a process unaffected by cycloheximide treatment. Only a few of these internalized glycoproteins were found to return to a trans-Golgi compartment followed by recycling to the cell surface. Taken together, these data indicate that the majority of replacement of sialic acids on the cell surface is due to de novo synthesis of glycoproteins and that only a small number of glycoproteins recycle through a trans-Golgi compartment.  相似文献   

17.
Infection by some rotavirus strains requires the presence of sialic acid on the cell surface, its infectivity being reduced in cells treated with neuraminidase. A neuraminidase treatment-resistant mutant was isolated from the porcine rotavirus strain OSU. In reassortant strains, the neuraminidase-resistant phenotype segregated with the gene coding for VP4. The mutant retained its capacity to bind to sialic acid. The VP4 sequence of the mutant differed from that of the parental OSU strain in an Asp-to-Asn substitution at position 100. Neutralization escape mutants selected from an OSU neuraminidase-sensitive clone by monoclonal antibodies that failed to recognize the neuraminidase-resistant mutant strain carried the same mutation at position 100 and were also neuraminidase resistant. Neuraminidase sensitivity was restored when the mutation at position 100 was compensated for by a second mutation (Gln to Arg) at position 125. Molecular mechanics simulations suggest that the neuraminidase-resistant phenotype associated with mutation of OSU residue 100 from Asp to Asn reflects the conformational changes of the sialic acid cleft that accompany sialic acid binding.  相似文献   

18.
The effect of pretreatment of murine L cells with bacterial neuraminidases on type 3 reovirus attachment was examined. We observed that such treatments resulted in a 60 to 80% decrease of subsequent attachment of 35S-labeled type 3 reovirus in a time- and dose-dependent manner. This result was specific for removal of cell surface sialic acid residues since the specific neuraminidase inhibitor 2-deoxy-2,3-dehydro-n-acetyl neuraminic acid completely prevented the observed effect. Although the total amount of radiolabeled virus bound to neuraminidase-treated cells was greatly reduced, unlabeled reovirus competed only slightly less efficiently for the attachment of 35S-labeled reovirus to neuraminidase-treated versus mock-treated L cells, suggesting that the specificity of the virus interaction with cellular receptor sites was only slightly diminished. Saturation experiments with mock-treated cells or with cells treated with Vibrio cholerae or with V. cholerae plus Arthrobacter ureafaciens neuraminidases indicated that the number of specific cellular receptor sites for type 3 reovirus were reduced by about 47%. We determined that under the neuraminidase digestion conditions used in this experiment we were able to remove a maximum 75% of the total N-acetylneuraminic acid of L cells. Our results also demonstrated that glycoproteins bearing a large amount of sialic acid containing oligosaccharides as well as purified N-acetylneuraminic acid, N-glycolylneuraminic acid, and N-acetylneuraminyl lactose were inhibitors of attachment, while proteins containing no sialic acid or negligible amounts of sialic acid did not inhibit attachment. High concentrations of various monosaccharides and lactose had no effect on reovirus attachment, in agreement with the recent results of Armstrong and his collaborators (Armstrong et al., Virology, 138:37-48, 1984). These data are also supported by the observation that gangliosides are inhibitors of viral attachment (Armstrong et al., Virology, 138:37-48, 1984). Taken together, our results suggest that cell surface sialic acid-containing glycoconjugates are involved in type 3 reovirus binding to murine L cells.  相似文献   

19.
The distribution of sialic acid and hexosamines was studied in purified organelles obtained from L cells. The major portion of the sialic acid of the intact cell is found in the surface membranes (66%). Only small amounts of sialic acid are found in the other purified fractions with the exception of the lysosomes which contained approx. 16%. The hexosamines are largely distributed between the surface membranes (33%) and soluble fraction (25%). Microsomes and mitochondria contain 14 and 11%, respectively, of the hexosamines of the intact cell and the nuclei contain 4%. The molar ratio of hexosamines to sialic acid of these fractions indicate differences in glycoprotein and/or glycolipid contents of the cell organelles.  相似文献   

20.
Carbohydrates were located on the surface of Phytomonas davidi using ultrastructural cytochemistry, and agglutination induced by lectins which bind to residues of mannose, N-acetylglucosamine, galactose, N-acetylgalactosamine, fucose and sialic acid. The surface charge of the cells was analysed by the binding of cationic particles (colloidal iron and cationized ferritin) to the cell surface and by cell electrophoretic mobility (EPM). Based on observations of binding of cationic particles to the cell surface; a decrease in the binding of these particles to the cell surface; a decrease in the mean EPM of the cells after their incubation in the presence of neuraminidase; and detection of N-acetylneuraminic acid by paper and gas-liquid chromatography, it was concluded that sialic acid residues are exposed on the surface of P. davidi. These residues may be glycolipids or are masked on the cell surface since only after brief trypsinization were the cells agglutinated by the lectin from Limulus polyphemus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号