首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of eutrophication on particulate amorphous silica (ASi) sequestration was isolated and quantified in Lake St. Croix and Lake Pepin, two natural, human-impacted impoundments of the upper Mississippi River. In contrast to impoundments behind engineered dams, where silica (Si) fluxes may be changed by various aspects of dam construction, these two riverine lakes have long (9,000+ years) sedimentary sequences that record the entire span of cultural eutrophication and the resulting silica sequestration. The concentrations of dissolved silicate (DSi) and ASi in the lake inflows were measured for 1 year to obtain the total flux of bioavailable silica (TSib = DSi + ASi) to each impoundment. Historical rates of Si sequestration in each lake were determined using ASi burial in multiple sediment cores and modeled estimates of historical TSib fluxes. The Si trapping efficiency of each lake was found to have increased exponentially with cultural eutrophication (estimated two- to fivefold increase in Lake St. Croix and 9- to 16-fold increase in Lake Pepin over the last 100 years), indicating the degree to which eutrophication of impoundments can reduce silica export to downstream coastal and marine ecosystems. Because these two lakes presently exhibit different degrees of eutrophication, together they depict a relationship between phosphorus concentration and Si trapping efficiency that may be applied to other impoundments, including human-made reservoirs.  相似文献   

2.
In this study of the Lough Neagh catchment a relationship has been sought between the loads of dissolved and total silica and the flow of each of the six inflowing rivers. Two of these rivers-the Main and Six Mile Water-carry a higher ratio of dissolved to total silica than do the remaining four rivers due to the geology of the catchment. The multiple regressions of loads in tonnes against river flows in cubic metres show a linear relationship for dissolved but not for total silica. The explanation for this non-linearity has been sought in the river proaies, where the fall for the last 30 m varies from 5 to 25 km depending on the river. The rivers Main and Six Mile Water are the steepest, and linear relationships were obtained in their regressions while the shallowest profile was found in the Blackwater where non-linearity in the multiple regression was obtained. In Lough Neagh the dissolved silica content was gradually reduced from early winter through to springtime by diatom growth and a balance has been drawn up for this utilization. This reduction also compares with the quantity in the diatom crop at maximum based on cell volume measurements. The summer build up of the dissolved silica content of the lough has been shown to be greater than the quantity contributed by the inflowing rivers from late spring to autumn and the data show that the recycling of silica from some 65% of the frustules from the spring crop after its collapse would account for the summer increase.  相似文献   

3.
Diatom populations and silica concentrations were monitored at frequent intervals in the shallow, eutrophic Loch Leven over a 27-day period (October 1972) and the influences of the inflows, outflow and the sediment were assessed. Changes in dissolved and particulate silica are accounted for by incorporating the results into a silica budget. During this period processes affecting silica within the loch were more important than those outside. The incorporation of diatom frustules into the sediments and the release of dissolved silica from the sediments appeared to be of particular importance. Evidence suggests that dissolution of the frustules of some planktonic diatom species was also important.  相似文献   

4.
The investigation of the epiphyton associated with Scirpus validus VAHL. in Lake Wabamun commenced in May 1971 and continued until the end of August 1972. Seven stations encompassing heated, partially and non-heated areas of the lake were investigated. From July 1971 until the termination of the investigation water temperature, dissolved oxygen and water chemistry were monitored. There were no large variations in these parameters except for water temperature and dissolved oxygen levels among the stations. However, there were increases in the dissolved silica, nitratenitrogen and phosphate-phosphorus levels during the autumn and winter months at the heated stations while at a partially heated station only dissolved silica and nitrate-nitrogen increased. The epiphyton at all stations showed a spring maximum, a summer minimum, and a maximum in the late summer/early autumn. The spring dominants at all stations were Fragilaria capucina and Diatoma elongatum. During the late summer/early autumn maximum diatoms were dominant at the non-heated stations while chlorophycean species were dominant at the heated stations. The heated water caused a decrease in the number of species and a corresponding increase in the importance of a few species at the heated stations. The major impact of the heated water, however, was an extension of the period of open water and the corresponding increase in mean yearly standing crop size in the heated areas.  相似文献   

5.
At weekly intervals from July to October 2006, we measured silica deposition in the summer diatom assemblage at various depths in the eutrophic ?ímov Reservoir (Czech Republic) using PDMPO, the 2‐(4‐pyridyl)‐5{[4‐(2‐dimethylaminoethyl‐aminocarbamoyl)‐methoxy]phenyl}oxazole labeling technique. Fluorescence microscopy coupled with image analysis allows quantifying silicon (Si) deposition over time and a simple distinction between cells that are actively depositing Si and those that are not. Diatom assemblage was exclusively dominated by Fragilaria crotonensis Kitton, which formed pronounced subsurface maxima (2–6.5 m). Concentrations of the main nutrients (Si and phosphorus, P) were low over the whole season; however, at depth, the nutrient availability was higher than at the surface. Fragilaria silica deposition rates were eight times higher at the surface than at depth. Half the population was involved in silica deposition at the surface, while only 20% active cells were doing so at depth. At the surface, silica deposition was limited by P deficiency; the effect of dissolved Si (DSi) was not statistically significant. Silica deposition at depth was significantly constrained by low light availability despite the 1% average light attenuation at depth, which is supposed sufficient for photosynthesis. This study represents the first attempt to employ the PDMPO technique coupled with quantitative image analysis of PDMPO fluorescence in freshwater ecology. On the basis of our results, PDMPO probe appears to be an appropriate proxy for the study of resource limitation in natural diatom populations.  相似文献   

6.
Maximum dissolution rates of biogenic silica as a function of depth in the ocean were calculated as a function of the variables temperature, pH, dissolved silicon concentration, and the measured surface area of radiolarian skeletons of a single species. These rates when compared with observed weight losses during an in situ dissolution experiment suggest a mechanical weight loss of about 50%. The relationship between mechanical weight loss and total weight loss is linear, suggesting the usefulness of this mathematical approach to dissolution experiments as well as the need for caution in trying to apply such loss data directly to the environment.  相似文献   

7.
Abiotic–biotic mechanisms of microstromatolitic spicular sinter (geyseritic) initiation and development were elucidated by in situ growth experiments at Champagne Pool (75 °C, pH 5.5). Siliceous sinter formed subaerially on glass slides placed along the margin of the hot spring. Environment–silica–microbe interactions were revealed by periodic collections of incremental sinter growth that formed under a range of environmental conditions including quiescence vs. wave turbulence, and wind–evaporation vs. steam–condensation. Sinter surfaces were intermittently colonized by voluminous networks of filamentous micro‐organisms, with submicron diameters, that provided an extensive surface area for silica deposition. The subaerial distribution of sinter and its textures reflected micron‐ to centimetre‐scale differences in environmental conditions, particularly relating to the balance between wave‐supplied dissolved silica and its precipitation, forced by cooling and evaporation. A continuum of sinter textures formed, representing rates of silica precipitation that either out‐paced biofilm growth or regulated the structural development of biofilms, and hence also the nature of microbially templated sinter. Massive laminae of porous, filamentous‐network sinter and/or fenestrae (up to 10's of microns in thickness and diameter) formed at relatively low rates of silica deposition (approximately 0.2 mg slide?1 day?1). At high rates (>1.9 mg slide?1 day?1), densely packed, granular or nonporous sinter formed, with filament networks disappearing into the siliceous matrix and becoming imperceptible under scanning electron microscopy (SEM). Furthermore, spicules were nucleated by filamentous microcolonies, where their discrete conical morphologies were preserved by accretion of thin sinter laminae. Microstromatolitic spicular growth ensued at fluctuating low to high rates of silica precipitation. Greater apical sinter build‐up, and hence upward polarity, resulted from focused microbial recolonization and progressively greater subaerial exposure at microspicule tips. The biogenic origin of spicular sinter at Champagne Pool clearly demonstrates that micron‐scale biofilms, displaying self‐organization patterns common to both biofilms and microbial mats, can be an essential factor in shaping characteristic centimetre‐scale sinter macrostructures. These findings suggest that a biogenic origin for geyserites elsewhere should also be considered. Moreover, results corroborate the supposition that microbially generated surface roughness may be significant for stromatolite morphogenesis in cryptic Precambrian carbonates.  相似文献   

8.
Isaji  Chiaki 《Hydrobiologia》2003,504(1-3):31-38
A new fractionation method of silica was developed in order to investigate its behavior in reservoirs. The method included separation of dissolved and particulate fractions, acid extraction, mild alkali extraction, and alkali fusion. The fraction types were dissolved silica (SiD), adsorbed silica (SiAd), amorphous silica (SiAm), and crystalline silica (SiC). Samples were taken from two reservoirs, Iwaya and Kawabe, in the Kiso River in Japan. The inorganic silica (SiAd and SiC) concentrations showed good correlations with the Fe and Al concentrations. The biogenic silica concentration was the difference between total SiAm and Al-bound SiAm. In the deep Iwaya Reservoir, inorganic particulate silica derived from silt and clay was transported from the riverine zone to a deep layer of the lacustrine zone. In the shallow Kawabe Reservoir, biogenic silica increased longitudinally with the growth of diatoms.  相似文献   

9.
Temporal evolution of dissolved and biogenic silica concentrations along the Scheldt tidal river and in its tributaries was investigated during 1 year in 2003. In the tributaries, dissolved silica (DSi) concentrations remained high and biogenic silica (BSi) concentrations were low throughout the year. In the tidal river during summer, DSi was completely consumed and BSi concentrations increased. Overall, most of the BSi was associated with living diatoms during the productive period in the tidal river. Nevertheless, the detrital BSi was a significant fraction of the total BSi pool, of which less than 10% could be attributed to phytoliths. The tidal river was divided into two zones for budgeting purposes. The highest productivity was observed in the zone that received the highest water discharge, as higher riverine DSi input fluxes induced presumably a less restrictive DSi limitation, but the discharge pattern could not explain all by itself the variations in DSi consumption. Silica uptake and retention in the tidal river were important at the seasonal time-scale: from May to September, 48% of the riverine DSi was consumed and 65% of the produced BSi was deposited, leading to a silica (DSi + BSi) retention in the tidal river of 30%. However, when annual fluxes were considered, DSi uptake in the tidal river amounted to 14% of the DSi inputs and only 6% of the riverine silica (DSi + BSi) was retained in the tidal river.  相似文献   

10.
Compared to knowledge about N and P processing in the aquatic continuum of lakes, wetlands and estuaries, knowledge concerning transport and cycling of Si is only fragmentary. Furthermore, Si research in estuaries has mainly been focused on subtidal benthic sediments and uptake and recycling by diatom communities. The biogeochemical cycling of Si in tidal wetlands, which can contain large amounts of Si, has thus far been neglected. We have conducted several whole ecosystem Si mass-balances on a freshwater marsh located in the Schelde estuary (6 tidal cycles, 2 with BSi included). Our measurements show that the freshwater marsh acts as an important source of dissolved Si to the main river (1–18% more export than import, on average 0.114 g m–2). This export is compensated by import of amorphous silica into the marsh (19–55% more import than export). The marsh was shown to act as silica recycler, resupplying biologically available dissolved Si to the estuarine ecosystem. Extrapolations show that during summer and spring months, when dissolved silica is depleted due to diatom growth, almost half of the total dissolved silica load in the main river channel could result from marsh recycling.  相似文献   

11.
Human activities have altered riverine silica cycling and diminished the supply of silica to the oceans, but few rivers have been intensively monitored to evaluate the magnitude of these changes. In this study we measured dissolved silica (DSi) and amorphous silica (ASi) fluxes into and out of two large, culturally-impacted natural impoundments of the upper Mississippi River, Lakes St. Croix and Pepin, USA. ASi sedimentation rates and sediment–water fluxes of DSi were calculated for each lake, and a mass-balance approach was used to determine in-lake ASi production. ASi from terrestrial phytoliths in the lake sediments was determined to be only partially available to biotic recycling, and in-lake ASi dissolution was small relative to the total silica budgets. The river reaches upstream of the two lakes were found to have abundant DSi, and riverine diatom production was found to contribute significant amounts of ASi to each lake. The average total phosphorus concentration in Lake Pepin is four times that in Lake St. Croix but ASi production in Lake Pepin is only 2.3 times higher than in Lake St. Croix, indicating that diatom growth in Pepin is limited by factors such as turbidity. Lake St. Croix currently traps about 10% of the inflowing total bioavailable silica (TSib = DSi + ASi) while Lake Pepin traps closer to 20% of its inflowing TSib, clearly demonstrating the importance of silica retention in lakes and reservoirs along the land–ocean continuum.  相似文献   

12.
Platinum(II) octaethylporphyrin (PtOEP)-loaded organic–inorganic hybrids were obtained via the microwave-assisted sol–gel condensation with methyltrimethoxysilane and poly(vinylpyrrolidone). From transparent and homogeneous hybrid films, the strong phosphorescence from PtOEP was observed. Next, the resulting hybrids were immersed in the aqueous buffer, and the emission intensity was monitored by changing the dissolved oxygen level in the buffer. When the hybrid with relatively-higher amount of the silica element, the strong phosphorescence was observed even under the aerobic conditions. In contrast, the emission from the hybrids with lower amounts of the silica element was quenched under the hypoxic conditions. This is, to the best of our knowledge, the first example to demonstrate that the responsiveness of the phosphorescence intensity of PtOEP in hybrid films to the dissolved oxygen concentration in water can be modulated by changing the percentage of the contents in the material.  相似文献   

13.
Sedimentation rates were estimated in a Central Amazonian Black-water inundation forest. Sediment deposition on the forest ground, remote from the river bed, during an annual flood period, is of the order of 1 to 10 tons per hectare, depending on water depth and duration of flooding. The sediments consisted of fine organic matter, kaolinite, quartz sands and biogenic particles of silica. Their genesis and deposition depend on the interplay between pedogenic, limnological and biological processes. Sediments derive primarily from the materials leached from the soils. Clay soils are the main source of dissolved silica, and the sandy soils are the main sources of organic coumpounds and mineral particles. The physical sedimentation of particles as quartz sand grains only occurs in the upper reaches of the studied river. In the flood plain, the sedimentation is due to the coagulation and deposition of combined mineral particles and humic substances, and to the biological precipitation of the silica leached from the soil by sponges.  相似文献   

14.
Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid   总被引:2,自引:0,他引:2  
Bacterial chemotaxis has the potential to increase the rate of degradation of chemoattractants, but its influence on degradation of hydrophobic attractants initially dissolved in a non-aqueous-phase liquid (NAPL) has not been examined. We studied the effect of chemotaxis by Pseudomonas putida G7 on naphthalene mass transfer and degradation in a system in which the naphthalene was dissolved in a model NAPL. Chemotaxis by wild-type P. putida G7 increased the rates of naphthalene desorption and degradation relative to rates observed with nonchemotactic and nonmotile mutant strains. While biodegradation alone influenced the rate of substrate desorption by increasing the concentration gradient against which desorption occurred, chemotaxis created an even steeper gradient as the cells accumulated near the NAPL source. The extent to which chemotaxis affected naphthalene desorption and degradation depended on the initial bacterial and naphthalene concentrations, reflecting the influences of these variables on concentration gradients and on the relative rates of mass transfer and biodegradation. The results of this study suggest that chemotaxis can substantially increase the rates of mass transfer and degradation of NAPL-associated hydrophobic pollutants.  相似文献   

15.
We tested the hypothesis that species composition and persistence of phytoplankton communities in nutrient rich lowland rivers depends mainly on physical factors. The study aimed to analyse the effects of water discharge, temperature and chemistry on phytoplankton dynamic and species composition in the lowland reach of the eutrophic Po river (Italy). Both taxonomical and morpho-functional methods were used. True planktonic and tychoplanktic (i.e. detached taxa of benthic origin that remain in suspension) species were found, among which only a few taxa and functional groups prevailed. Diatoms were the most abundant, with a clear dominance of species either sensitive to the onset of water stratification or well adapted to turbid waters. Phytoplankton abundance, biomass and chlorophyll-a followed similar trends, attaining the highest values in summer, at low discharge rates. Correlation and multivariate analysis revealed that the development of a stable phytoplankton community was mainly controlled by water discharge rates. Namely, changes in water flow rates induced major variations in the community structure. The seasonal succession of phytoplankton assemblages was also related to water temperature and dissolved reactive silica availability to some extent overlapping flow effects.  相似文献   

16.
1. Silica in the leaves of grasses can act as a defence against both vertebrate and invertebrate herbivores. The mechanisms by which silica affects herbivore performance are not well characterized. Here we expose an insect herbivore Spodoptera exempta to high-silica diets and test two mechanisms by which silica has been proposed to act as a defence. First, that silica reduces the digestibility of leaves and second, that silica causes wear to insect mandibles, both of which could potentially impact on herbivore performance. 2. Silica reduced the efficiency with which S. exempta converted ingested food to body mass and the amount of nitrogen absorbed from their food, leading to reduced insect growth rates. The measure of how efficiently herbivores utilize digested food (ECD) was unaffected by silica. 3. These effects occurred even with short-term exposure to silica-rich diets, but they also increased markedly with the duration of exposure and affected late instars more than early instar larvae. This appears to be due to the progressive impacts of silica with longer exposure times and suggests that herbivores cannot adapt to silica defences, nor do they develop a tolerance for silica with age. 4. Exposure to silica-rich diets caused increased mandible wear in S. exempta. This effect was extremely rapid, occurring within a single instar, further reducing feeding efficiency and growth rates. These effects on insect growth and feeding efficiency are nonreversible, persisting after the herbivore has switched diets. Up to a third of this residual impact can be explained by the degree of mandible wear caused by previous silica-rich diets. 5. The impacts of silica on S. exempta larvae were progressive with exposure time and could not be compensated for, even by switching to a different diet. Thus, herbivores cannot easily adapt to physical defences such as silica, suggesting this defence will have major implications for herbivore fitness.  相似文献   

17.
During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N(2) fixation in the North Atlantic.  相似文献   

18.
During incubation of seawater in bottles, the decrease in dissolved oxygen is often nonlinear over time scales frequently used to measure respiration. Numbers of bacteria always increase, and rates of assimilation of dissolved leucine often increase exponentially. This suggests that sample handling disrupts the previously existing food web, leading to shifts of trophic state and unbalanced growth. Potential errors in measuring respiratory rate can be minimized by documenting these variables.  相似文献   

19.
Multivariate analysis of spatial variation in 15 physicochemical characteristics grouped the seven major north-east rivers into two sets — highland and lowland rivers. The highland rivers formed a continuum that could be further divided into rivers with low concentrations of dissolved materials including the Spey and Dee (full highland rivers), and a more variable group with higher concentrations of dissolved materials including the Don, Deveron and Lossie (intermediate highland rivers) emphasising the diversity of river types classically described as highland. The Lossie was differentiated from the other intermediate highland rivers by lower oxygen concentration and pH. The major differences in physicochemistry between rivers were consistent with differences in catchment geology, soil type, climate, and land use. The large amounts of dissolved material and high nutrient status of the lowland Ythan and Ugie rivers reflected the high proportion of their catchments under agriculture, and the acidity of the Lossie reflected the high proportion of its catchment under forest. The small amounts of dissolved material in the Spey and Dee were attributable to the high proportion of slow weathering acidic rocks and acid soils in their catchments, and to the high volume flows of these rivers relative to the others. The amounts of dissolved material were greater in summer during low base flows and were accomparied by an increase in phosphate concentration in the lowland rivers. Oxygen saturation increased in summer in the Ythan and the Don, presumably as a result of greater photosynthetic activity. Marked declines in silica were thought to result from significant diatom growth in the highland and intermediate highland rivers, particularly the Don, during summer.  相似文献   

20.
Rapid rainfall events can be responsible for a large proportion of annual nutrient and carbon loading from a watershed. The bioavailability of organic matter during these rapid loading events increases, suggesting that storms play a relevant role in the mobilization of potentially labile terrestrial carbon. A high correlation between river discharge rates and dissolved and particulate nutrient and carbon concentrations during autumn and winter storms was observed in several temperate Pacific Northwest rivers. Dissolved and particulate lignin concentrations also increased with river discharge; for example, in October 2009 dissolved lignin concentrations increased roughly 240% with a 200% increase in river discharge. During these storms a unique phenolic composition was observed for dissolved lignin that was rapidly mobilized from surface soils relative to the base flow of dissolved lignin. The observed increase in Ad/Al ratios with discharge indicates that rapidly mobilized dissolved lignin is more degraded than the base flow of dissolved lignin. Similarly, a marked increase in C/V ratios and decrease in the S/V ratio of dissolved lignin phenols with increasing river discharge was observed. These results may indicate a difference in source between mobilized and base flow pools, or, more likely, preferential degradation and mobilization/retention of specific lignin phenols. The cumulative results from this year-long data set indicate that a shallow nutrient-rich pool of particulate and dissolved organic matter accumulates in watersheds during periods of soil-saturation deficiency (summer). Autumn and winter storms mobilize this pool of accumulated nutrients from surface soils, which is exhausted with successive winter storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号