首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
细胞核基因突变引起的植物叶片花斑,是研究细胞器(特别是叶绿体)和细胞核之间信息交流的重要材料,也在园艺科学上有重要的应用价值。综述了拟南芥菜IM.VAR1、VAR2、CHM.CUE1、PAC.ATD2和VAR3等8个细胞核基因突变后引起的叶片花斑,主要包括这些基因所编码的蛋白质以及它们突变以后引起花斑的机制。  相似文献   

3.
4.
Cell metabolism and function are modulated in part by cell and nuclear shape. Nuclear shape is controlled by the nuclear matrix, the RNA-protein skeleton the nucleus, and its interactions with cytoskeletal systems such as intermediate filaments and actin microfilaments. The nuclear matrix plays an important role in cell function and gene expression because active genes are bound to the nuclear matrix whereas inactive genes are not. It is unknown, however, how genes move on and off the matrix, and whether these events require compositional protein changes, i.e., alterations in protein content of the nuclear matrix, or other, more subtle alterations and/or modificatins. The purpose of this investigation was to begin to determine how nuclear matrix protein composition is related to gene expression. We demonstrate that gene expression can change without apparent changes in the protein composition of the nuclear matrix in MCF10A breast epithelial cells.  相似文献   

5.
Following the acquisition of chloroplasts and mitochondria by eukaryotic cells during endosymbiotic evolution, most of the genes in these organelles were either lost or transferred to the nucleus. Encoding organelle-destined proteins in the nucleus allows for host control of the organelle. In return, organelles send signals to the nucleus to coordinate nuclear and organellar activities. In photosynthetic eukaryotes, additional interactions exist between mitochondria and chloroplasts. Here we review recent advances in elucidating the intracellular signalling pathways that coordinate gene expression between organelles and the nucleus, with a focus on photosynthetic plants.  相似文献   

6.
7.
8.
Nuclear transfer (NT) is used to elucidate fundamental biological issues such as reversibility of cell differentiation and interactions between the cytoplasm and nucleus. To obtain an insight into interactions between the somatic cell nucleus and oocyte cytoplasm, nuclear remodeling and gene expression were compared in bovine oocytes that had received nuclei from bovine and mouse fibroblast cells. While the embryos that received nuclei from bovine fibroblast cells developed into blastocysts, those that received nuclei from mouse fibroblasts did not develop beyond the 8-cell stage. Similar nuclear remodeling procedures were observed in oocytes reconstructed with mouse and bovine fibroblast cells. Foreign centrosomes during NT were introduced into embryos reconstructed with both fibroblast cell types. A number of housekeeping mouse genes (hsp70, bax, and glt-1) were abnormally expressed in embryos that had received nuclei from mouse fibroblast cells. However, development-related genes, such as Oct-4 and E-cad, were not expressed. The results collectively suggest that the bovine oocyte cytoplasm supports nuclear remodeling, but not reprogramming of mouse fibroblast cells.  相似文献   

9.
Kumaran RI  Thakar R  Spector DL 《Cell》2008,132(6):929-934
The mammalian cell nucleus provides a landscape where genes are regulated through their organization and association with freely diffusing proteins and nuclear domains. In many cases, specific genes are highly dynamic, and the principles governing their movements and interchromosomal interactions are currently under intensive study. Recent investigations have implicated actin and myosin in chromatin dynamics and gene expression. Here, we discuss our current understanding of the dynamics of the interphase genome and how it impacts nuclear organization and gene activity.  相似文献   

10.
11.
The mammalian nucleus has a complex structural organization that dynamically interacts with the genome. Chromatin is organized into discrete domains by association with distinct nuclear compartments enriched in structural and regulatory proteins. Growing evidence suggests that gene activity is modulated by interactions with these sub-nuclear compartments. Therefore, analyzing how nuclear architecture controls genome activity will be necessary to fully understand complex biological processes such as development and disease. In this article we describe a molecular methodology involving inducible tethering that can be used to position genes at the inner nuclear membrane (INM)-lamina compartment. The consequences of such directed re-positioning on gene activity or other DNA transactions can then be analyzed. This approach can be generalized and extended to position genes or chromosomal domains within other nuclear compartments thereby greatly facilitating the analysis of nuclear structure and its impact on genome activity.  相似文献   

12.
13.
Protein export from the nucleus   总被引:2,自引:1,他引:1  
  相似文献   

14.
15.
The cell nucleus is separated from the rest of the cell by the nuclear envelope. The nuclear envelope, nuclear envelope proteins and nuclear lamina organise the structure of the entire nucleus and the chromatin via a myriad of interactions. These interactions are dynamic, change with the change (progress) of the cell cycle, with cell differentiation and with changes in cell physiology.  相似文献   

16.
The question of how genetic materials are trafficked in and out of the cell nucleus is a problem of great importance not only for understanding viral infections but also for advancing gene-delivery technology. Here we demonstrate a physical technique that allows gene trafficking to be studied at the single-gene level by combining sensitive fluorescence microscopy with microinjection. As a model system, we investigate the nuclear import of influenza genes, in the form of ribonucleoproteins (vRNPs), by imaging single vRNPs in living cells in real time. Our single-particle trajectories show that vRNPs are transported to the nuclear envelope by diffusion. We have observed heterogeneous interactions between the vRNPs and nuclear pore complexes with dissociation rate constants spanning two orders of magnitude. Our single-particle tracking experiments also provided new insights into the regulation mechanisms for the nuclear import of vRNPs: the influenza M1 protein, a regulatory protein for the import process, downregulates the nuclear import of vRNPs by inhibiting the interactions between vRNPs and nuclear pore complexes but has no significant effect on the transport properties of vRNPs. We expect this single-particle tracking approach to find broad application in investigations of genetic trafficking.  相似文献   

17.
Hairless, a major antagonist of the Notch signaling-pathway in Drosophila (Bang and Posakony, 1992; Maier et al., 1992), associates with Suppressor of Hairless [Su(H)], thereby inhibiting trans-activation of Notch target genes (Brou et al., 1994). These molecular interactions could occur either at the step of signal transduction in the cytoplasm or during implementation of the signal within the nucleus. We examined the subcellular distribution of Hairless, showing that it is a low abundant, ubiquitous protein that is cytosolic as well as nuclear. High levels of Hairless cause nuclear retention of Su(H), loss of Hairless reduces the amount of Su(H) in the nucleus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号