首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholinergic actions on subfornical organ (SFO) neurons in rat slice preparations were studied by using whole cell voltage- and current-clamp recordings. In the voltage-clamp recordings, carbachol and muscarine decreased the frequency of GABAergic inhibitory postsynaptic currents (IPSCs) in a dose-dependent manner, with no effect on the amplitudes or the time constants of miniature IPSCs. Meanwhile, carbachol did not influence the amplitude of the outward currents induced by GABA. Furthermore, carbachol and muscarine also elicited inward currents in a TTX-containing solution. From the current-voltage relationship, the reversal potential was estimated to be -7.1 mV. These carbachol-induced responses were antagonized by atropine. In the current-clamp recordings, carbachol depolarized the membrane with increased frequency of action potentials. These observations suggest that acetylcholine suppresses GABA release through muscarinic receptors located on the presynaptic terminals. Acetylcholine also directly affects the postsynaptic membrane through muscarinic receptors, by opening nonselective cation channels. A combination of these presynaptic and postsynaptic actions may enhance activation of SFO neurons by acetylcholine.  相似文献   

2.
The effects of noradrenaline (NA) and its analogs on subfornical organ (SFO) neurons in rat slice preparations were investigated by using whole cell patch-clamp recording. In the current-clamp mode, the application of NA at 10-100 microM produced membrane depolarization (63%, 17 responsive neurons/27 neurons tested) and hyperpolarization (22%, 6/27 neurons). In the voltage-clamp mode, NA application at 1-100 microM produced inward currents (69%, 42/61 neurons) and outward currents (23%, 14/61 neurons). These currents remained in the presence of TTX or both glutamate and GABA receptor antagonists. In most of the neurons (25/31 neurons) showing inward currents in the presence of NA, the membrane conductance was not changed by voltage ramps or hyperpolarizing pulse stimulation. Similar responses were obtained by the application of the alpha1-agonist phenylephrine. The phenylephrine-induced inward currents were inhibited by the alpha1-antagonist prazosin. The alpha2-agonist clonidine decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (4/10 neurons). In addition, RT-PCR assay and immunohistochemical staining showed the existence of alpha1-adrenoceptors in the SFO. The results suggest that SFO neurons in rats are activated postsynaptically through alpha1-adrenoceptors and that the activation is enhanced by suppressing GABAergic inhibitory synaptic inputs through presynaptic alpha2-adrenoceptors.  相似文献   

3.
胍丁胺对大鼠穹隆下器神经元电活动的影响   总被引:1,自引:1,他引:0  
Wang ZM  Ji SM  Zhang H  Sun GQ  Wang ZA  He RR 《生理学报》2004,56(4):493-497
应用细胞外记录单位放电技术,在73个大鼠穹隆下器脑片上观察了胍丁胺(agmatine,Agm)对神经元电活动的影响。实验结果如下:(1)在28个穹隆下器脑片上灌流Agm(1.0μmol/L)2min,有24个单位(85.7%)自发放电频率明显降低,4个单位(14.3%)无明显变化:(2)预先用L-谷氨酸(0.3mmol/L)灌流,24个放电单位中有19个单位(79.2%)放电频率明显增加,表现为癫痫样放电,5个单位(20.8%)的变化不明显,在此基础上灌流Agm(1.0gmol/L)2min,有15个单位(78.9%)的癫痫样放电被抑制,另外4个单位(21.1%)无明显变化:(3)灌流L型钙通道激动剂Bay K-8644(0.1μmol/L),在12个神经元放电单位中有10个单位(83.3%)的放电频率明显增加,另外2个单位(16.7%)变化不明显,然后灌流Agm(1.0μmol/L)2min,有8个单位(80%)的放电频率被抑制,其余无明显变化;(4)9个单位在灌流一氧化氮合酶(NOS)抑制剂N^G-nitro-L-arginine-methyl ester(L-NAME,50μmol/L)后,其中6个单位(66.7%)放电频率明显增加,另外3个单位(33.3%)放电频率变化不明显,在此基础上再给予Agm(1.0μmol)2min,增加的放电频率被抑制。上述结果提示:胍丁胺可抑制大鼠穹隆下器神经元自发放电以及由L-谷氨酸,Bay K-8644和L-NAME诱发的放电,这一效应可能与胍丁胺阻断了神经元的NMDA受体,从而减少钙离子内流有关。  相似文献   

4.
白藜芦醇抑制大鼠穹隆下器神经元放电   总被引:3,自引:0,他引:3  
Li M  Wang QS  Chen Y  Wang ZM  Liu Z  Guo SM 《生理学报》2005,57(4):523-528
应用细胞外记录单位放电技术,在大鼠穹隆下器脑片上观察了白藜芦醇(resveratrol)对穹隆下器神经元放电的影响。实验结果如下:(1)给予白藜芦醇(1、5、10μmol/L)2min后,大多数穹隆下器神经元(60/65,92.3%)的自发性放电频率呈剂量依赖性降低;(2)预先用0.3mmol/L的L-glutamate灌流穹隆下器脑片,全部放电单位(12/12,100%)放电频率明显增加,表现为癫痫样放电,在此基础上灌流白藜芦醇(5μmol/L)2min,大多数脑片(10/12,83.3%)的癫痫样放电被抑制;(3)预先用L型钙通道开放剂BayK8644灌流,全部(8/8,100%)放电增加,在此基础上灌流白藜芦醇(5μmol/L)2min,其放电全部被抑制;(4)灌流一氧化氮合酶抑制剂NG-nitro-L-argininemethylester(L-NAME)50μmol/L,多数脑片(11/14,78.6%)放电明显增加,在此基础上灌流白藜芦醇(5μmol/L)2min,大部分神经元(9/11,81.8%)放电被抑制;(5)灌流大电导钙激活性钾通道阻断剂tetraethylammoniumchloride(TEA)1mmol/L后,大多数神经元(10/12,83.3%)放电增加,在此基础上灌流白藜芦醇(5μmol/L)2min,(9/10,90%)放电频率明显减低。以上结果提示:白藜芦醇能抑制大鼠穹隆下器神经元自发放电以及由L-glutamate、L-NAME、BayK8644和TEA诱发的放电,可能与白藜芦醇抑制L型钙通道以及促进一氧化氮的释放有关;似乎与大电导钙激活性钾通道无关。  相似文献   

5.
During acute pancreatitis, protease-activated receptor 2 (PAR2) can be activated by interstitially released trypsin. In the mild form of pancreatitis, PAR2 activation exerts local protection against intrapancreatic damage, whereas, in the severe form of pancreatitis, PAR2 activation mediates some systemic complications. This study aimed to identify the molecular mechanisms of PAR2-mediated protective effects against intrapancreatic damage. A mild form of acute pancreatitis was induced by an intraperitoneal injection of caerulein (40 microg/kg) in rats. Effects of PAR2 activation on intrapancreatic damage and on mitogen-activated protein (MAP) kinase signaling were assessed. Caerulein treatment activated extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) within 15 min and maintained phosphorylation of ERK and JNK for 2 h in the rat pancreas. Although PAR2 activation by the pretreatment with PAR2-activating peptide (AP) itself increased ERK phosphorylation in rat pancreas, the same treatment remarkably decreased caerulein-induced activation of ERK and JNK principally by accelerating their dephosphorylation. Inhibition of ERK and JNK phosphorylation by the pretreatment with MAP/ERK kinase (MEK) or JNK inhibitors decreased caerulein-induced pancreatic damage that was similar to the effect induced by PAR2-AP. Notably, in caerulein-treated rats, PAR2-AP cotreatment highly increased the expression of a group of MAP kinase phosphatases (MKPs) that deactivate ERK and JNK. The above results imply that downregulation of MAP kinase signaling by MKP induction is a key mechanism involved in the protective effects of PAR2 activation on caerulein-induced intrapancreatic damage.  相似文献   

6.
7.
Role of MAP kinase in neurons   总被引:1,自引:0,他引:1  
Extracellular stimuli such as neurotransmitters, neurotrophins, and growth factors in the brain regulate critical cellular events, including synaptic transmission, neuronal plasticity, morphological differentiation and survival. Although many such stimuli trigger Ser/Thr-kinase and tyrosine-kinase cascades, the extracellular signal-regulated kinases, ERK1 and ERK2, prototypic members of the mitogen-activated protein (MAP) kinase family, are most attractive candidates among protein kinases that mediate morphological differentiation and promote survival in neurons. ERK1 and ERK2 are abundant in the central nervous system (CNS) and are activated during various physiological and pathological events such as brain ischemia and epilepsy. In cultured hippocampal neurons, simulation of glutamate receptors can activate ERK signaling, for which elevation of intracellular Ca2+ is required. In addition, brain-derived neurotrophic factor and growth factors also induce the ERK signaling and here, receptor-coupled tyrosine kinase activation has an association. We describe herein intracellular cascades of ERK signaling through neurotransmitters and neurotrophic factors. Putative functional implications of ERK and other MAP-kinase family members in the central nervous system are give attention.  相似文献   

8.
9.
Wang H  Wang ZA  He RR 《生理学报》2000,52(6):515-518
用细胞外记录技术 ,在大鼠脑片穹隆下器 (subfornicalorgan ,SFO)上观察了 17β 雌二醇 (17β estradiol,E2 )对SFO神经元放电的影响 ,并进而分析其作用机制。实验结果如下 :(1) 15个SFO神经元在给予小剂量E2(0 1nmol/L)时 ,放电频率由 3 2 1± 0 37增至 6 79± 0 71Hz(P <0 0 0 1) ;而在给予大剂量E2 (10 0nmol/L)时 ,则放电频率由 3 44± 0 40Hz降至 1 44± 0 36Hz (P <0 0 1) ;(2 )在 7个SFO神经元应用谷氨酸NMDA受体阻断剂MK 80 1(5 0pmol/L) ,可阻断小剂量E2 (0 1nmol/L)对SFO神经元的兴奋效应 ;(3)在 7个SFO神经元应用NO生理性前体L 精氨酸 (L arginine ,1mmol/L)时 ,SFO神经元放电减少 ,且可阻断小剂量E2 (0 1nmol/L)对神经元的兴奋效应 ;(4 )在 6个SFO神经元应用NOS抑制剂L NG 硝基精氨酸甲酯 (L NAME ,10mmol)引起SFO神经元放电增加 ,并阻断大剂量E2 (10 0nmol/L)对SFO神经元的抑制效应。结果提示 :E2 对SFO神经元有双重作用。小剂量E2 使SFO神经元放电增加 ,这一效应可能与谷氨酸受体激活有关 ;而大剂量E2 则导致神经元放电减少 ,此效应可归因于NOS激活而引发NO生成。  相似文献   

10.
Mitogen‐activated protein kinases (MAPKs; ERK1/2, p38, JNK, and ERK5) have evolved to transduce environmental and developmental signals (growth factors, stress) into adaptive and programmed responses (differentiation, inflammation, apoptosis). Almost 20 years ago, it was discovered that MAPKs contain a docking site in the C‐terminal lobe that binds a conserved 13‐16 amino acid sequence known as the D‐ or KIM‐motif (kinase interaction motif). Recent crystal structures of MAPK:KIM‐peptide complexes are leading to a precise understanding of how KIM sequences contribute to MAPK selectivity. In addition, new crystal and especially NMR studies are revealing how residues outside the canonical KIM motif interact with specific MAPKs and contribute further to MAPK selectivity and signaling pathway fidelity. In this review, we focus on these recent studies, with an emphasis on the use of NMR spectroscopy, isothermal titration calorimetry and small angle X‐ray scattering to investigate these processes.  相似文献   

11.
The rising phase of the action potential in excitable cells is mediated by voltage-gated sodium channels (VGSCs), of which there are nine mammalian subtypes with distinct tissue distribution and biophysical properties. The involvement of certain VGSC subtypes in disease states such as pain and epilepsy highlights the need for agents that modulate VGSCs in a subtype-specific manner. Conotoxins from marine snails of the Conus genus constitute a promising source of such modulators, since these peptide toxins have evolved to become selective for various membrane receptors, ion channels and transporters in excitable cells. This review covers the structure and function of three classes of conopeptides that modulate VGSCs: the pore-blocking mu-conotoxins, the delta-conotoxins which delay or inhibit VGSC inactivation, and the muO-conotoxins which inhibit VGSC Na(+) conductance independent of the tetrodotoxin binding site. Some of these toxins have potential therapeutic and research applications, in particular the muO-conotoxins, which may develop into potential drug leads for the treatment of pain states.  相似文献   

12.
13.
14.
The responsiveness of spontaneously active neurons in the subfornical organ (SFO) of adult ducks to angiotensin II (ANGII) and the bird specific anti-diuretic hormone, arginine vasotocin (AVT), the analog of the mammalian arginine vasopressin (AVP), were investigated in brain slices with extracellular recording technique. 65% (n = 66) of the neurons increased their activity after superfusion with ANGII, the rest were unresponsive. Application of AVT activated 52% (n = 68) of the investigated neurons and like ANGII never caused an inhibition of the spontaneously active SFO neurons. A close correlation exists between the ANGII and AVT sensitivity of duck SFO neurons, because 29 out of 33 neurons were excited by AVT as well as ANGII. The relatively weak antagonistic effect of the V1-type receptor antagonist Pmp-Tyr (Me)-Arg8-vasopressin on the AVT induced excitation suggests a different pharmacology of the bird AVT receptor as compared to the mammalian AVP receptor. The excitatory response of ANGII and AVT on the very same neurons suggest a similar function of both peptides on SFO mediated effects in vivo, such as an increase in water intake. However, peripheral AVT concentrations, unlike ANGII concentrations in the blood are not high enough to activate SFO neurons from the blood side of the blood brain barrier. Therefore AVT is presumably released from synapses of neurons originating within or projecting to the SFO. The identity of the ANGII and AVT reactive neurons suggests that synaptically released AVT should facilitate SFO mediated drinking.Abbreviations a CSF artificial cerebrospinal fluid - ANGII angiotensin II - AVT arginine vasotocin - AVP arginine vasopressin - ADH antidiuretic hormone - SFO subfornical organ - AVP 4–9 arginine-vasopressin fragment 4–9 - BBB blood-brain barrier  相似文献   

15.
Ren P  Zhang H  Qiu F  Liu YQ  Gu H  O'Dowd DK  Zhou QY  Hu WP 《PloS one》2011,6(6):e20263
Neuropeptide signaling plays roles in coordinating cellular activities and maintaining robust oscillations within the mammalian suprachiasmatic nucleus (SCN). Prokineticin2 (PK2) is a signaling molecule from the SCN and involves in the generation of circadian locomotor activity. Prokineticin receptor 2 (PKR2), a receptor for PK2, has been shown to be expressed in the SCN. However, very little is known about the cellular action of PK2 within the SCN. In the present study, we investigated the effect of PK2 on spontaneous firing and miniature inhibitory postsynaptic currents (mIPSCs) using whole cell patch-clamp recording in the SCN slices. PK2 dose-dependently increased spontaneous firing rates in most neurons from the dorsal SCN. PK2 acted postsynaptically to reduce γ-aminobutyric acid (GABA)-ergic function within the SCN, and PK2 reduced the amplitude but not frequency of mIPSCs. Furthermore, PK2 also suppressed exogenous GABA-induced currents. And the inhibitory effect of PK2 required PKC activation in the postsynaptic cells. Our data suggest that PK2 could alter cellular activities within the SCN and may influence behavioral and physiological rhythms.  相似文献   

16.
Seth D  Rudolph J 《Biochemistry》2006,45(28):8476-8487
MAP kinase phosphatase 3 (MKP3) is a protein tyrosine phosphatase (PTP) for which in vivo evidence suggests that regulation can occur by oxidation and/or reduction of the active site cysteine. Using kinetics and mass spectrometry, we have probed the biochemical details of oxidation of the active site cysteine in MKP3, with particular focus on the mechanism of protection from irreversible inactivation to the sulfinic or sulfonic acid species. Like other PTPs, MKP3 was found to be rapidly and reversibly inactivated by mild treatment with hydrogen peroxide. We demonstrate that unlike the case for some PTPs, the sulfenic acid of the active site cysteine in MKP3 is not stabilized in the active site but instead is rapidly trapped in a re-reducible form. Unlike the case for other PTPs, the sulfenic acid in MKP3 does not form a sulfenyl-amide species with its neighboring residue or a disulfide with a single proximate cysteine. Instead, multiple cysteines distributed in both the N-terminal substrate-binding domain (Cys147 in particular) and the C-terminal catalytic domain (Cys218) are capable of rapidly and efficiently trapping the sulfenic acid as a disulfide. Our results extend the diversity of mechanisms utilized by PTPs to prevent irreversible oxidation of their active sites and expand the role of the N-terminal substrate recognition domain in MKP3 to include redox regulation.  相似文献   

17.
18.
Alternaria tenuissima is a fungus widely present in the environment and causes diseases in plants and humans in the world. In this study, we constructed an A. tenuissima cDNA expression library in a centromeric yeast vector that allows the isolation of functional cDNA sequences from this environmental and pathogenic fungus. Through a genetic approach we have isolated and functionally characterized the cDNA sequences encoding the MAP kinase (MAPK) Hog1p and the MAPK kinase Pbs2p of A. tenuissima. AtHOG1 cDNA encodes a protein of 355 amino acids, while AtPBS2 cDNA encodes a protein of 683 amino acids.  相似文献   

19.
Transforming growth factor beta (TGFbeta) can modulate the activity of various MAP kinases. However, how this pathway may mediate TGFbeta-induced malignant phenotypes remains elusive. We investigated the role of autocrine TGFbeta signaling through MAP kinases in the regulation of cell survival in breast carcinoma MCF-7 cells and untransformed human mammary epithelial cells (HMECs). Our results show that abrogation of autocrine TGFbeta signaling with the expression of a dominant negative type II TGFbeta receptor (DNRII) or the treatment with a TGFbeta type I receptor inhibitor significantly increased apoptosis in MCF-7 cell, but not in HMEC. The expression of DNRII markedly decreased activated/phosphorylated Erk, whereas increased activated/phosphorylated p38 in MCF-7 cells. In contrast, there was no or little change of phosphorylated Erk and p38 in HMECs after the expression of DNRII. Inhibition of Erk activity in MCF-7 control cell induced apoptosis whereas restoration of Erk activity in MCF-7 DNRII cell reduced apoptosis. Similarly, inhibition of p38 activity also inhibited apoptosis in MCF-7 DNRII cell. Thus, autocrine TGFbeta signaling can enhance the survival of MCF-7 cells by maintaining the level of active Erk high and the level of active p38 low. Furthermore, the survival properties of TGFbeta pathway appear related to transformation supporting the notion that it may be a potential target for cancer therapy.  相似文献   

20.
Neurons integrate and encode complex synaptic inputs into action potential outputs through a process termed "intrinsic excitability." Here, we report the essential contribution of fibroblast growth factor homologous factors (FHFs), a family of voltage-gated sodium channel binding proteins, to this process. Fhf1-/-Fhf4-/- mice suffer from severe ataxia and other neurological deficits. In mouse cerebellar slice recordings, WT granule neurons can be induced to fire action potentials repetitively (approximately 60 Hz), whereas Fhf1-/-Fhf4-/- neurons often fire only once and at an elevated voltage spike threshold. Sodium channels in Fhf1-/-Fhf4-/- granule neurons inactivate at more negative membrane potential, inactivate more rapidly, and are slower to recover from the inactivated state. Altered sodium channel physiology is sufficient to explain excitation deficits, as tested in a granule cell computer model. These findings offer a physiological mechanism underlying human spinocerebellar ataxia induced by Fhf4 mutation and suggest a broad role for FHFs in the control of excitability throughout the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号