首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron (III) binding proteins are isolated from echidna (Tachyglossus aculeatus multiaculeatus) and platypus (Ornithorhynchus anatinus) milk and blood. On the basis of several criteria it is shown that the milk proteins are not lactoferrins, but are transferrins similar to the corresponding transferrins from the blood. The heterogeneity of the proteins, particularly the echidna milk transferrin, is, at least in part, due to different levels of sialic acid. Their N-terminal sequences (30 residues) are determined and compared with those of other transferrins and lactoferrins. The role of the proteins is discussed.  相似文献   

2.
Lactoferrin (LF) is an iron-binding glycoprotein found in different biological fluids of mammals and in neutrophils. It has been proposed to be involved in many functions, including protection from pathogens. In this work, purification of lactoferrin using an ion-exchange chromatography (SP-Sepharose) was attempted for the milk of the following animals: sheep (Ovis aries), goat (Capra hircus), camel (Camelus bactrianus), alpaca (Lama pacos), elephant (Elephas maximus) and grey seal (Halichoerus grypus), as well as human (Homo sapiens). Lactoferrin was identified in all the milks apart from that from grey seal. The thermal stability of the purified lactoferrins, in their native and iron-saturated forms, was studied by differential scanning calorimetry (DSC). Maximum temperature, onset temperature and enthalpy change of denaturation were higher when lactoferrins were saturated with iron than in their native form, indicating an increase in the stability of the protein structure upon iron-binding. Human lactoferrin was found to be the most heat-resistant and the other lactoferrins presented different degrees of thermoresistance, that of elephant being the least resistant. The antimicrobial activity of the different isolated lactoferrins was investigated against Escherichia coli 0157:H7. The minimal inhibitory concentrations (MICs) were determined by measuring the absorbance at 620 nm. The minimum bactericidal concentrations (MBCs) were also measured and it was found that camel lactoferrin was the most active lactoferrin against E. coli 0157:H7, whereas alpaca and human lactoferrins were the least active.  相似文献   

3.

Background

Lactoferrin is an iron-binding protein belonging to the transferrin family. In addition to iron homeostasis, lactoferrin is also thought to have anti-microbial, anti-inflammatory, and anticancer activities. Previous studies showed that all lactoferrins are glycosylated in the human body, but the recognition roles of their carbohydrate glycotopes have not been well addressed.

Methods

The roles of human and bovine lactoferrins involved in lectin–N-glycan recognition processes were analyzed by enzyme-linked lectinosorbent assay with a panel of applied and microbial lectins.

Results and conclusions

Both native and asialo human/bovine lactoferrins reacted strongly with four Man-specific lectins — Concanavalia ensiformis agglutinin, Morniga M, Pisum sativum agglutinin, and Lens culinaris lectin. They also reacted well with PA-IIL, a LFuc>Man-specific lectin isolated from Pseudomonas aeruginosa. Both human and bovine lactoferrins also recognized a sialic acid specific lectin-Sambucus nigra agglutinin, but not their asialo products. Both native and asialo bovine lactoferrins, but not the human ones, exhibited strong binding with a GalNAc>Gal-specific lectin-Wisteria floribunda agglutinin. Human native lactoferrins and its asialo products bound well with four Gal>GalNAc-specific type-2 ribosome inactivating protein family lectins-ricin, abrin-a, Ricinus communis agglutinin 1, and Abrus precatorius agglutinin (APA), while the bovine ones reacted only with APA.

General significance

This study provides essential knowledge regarding the different roles of bioactive sites of lactoferrins in lectin–N-glycan recognition processes.  相似文献   

4.
Comparative antimicrobial activity of lactoferrins from various sources (native lactoferrin from Laprot, human hololactoferrin, recombinant human lactoferrin isolated from the cultural medium of permissive cell culture transfected using pseudoadenovirus nanostructure with the human lactoferrin gene, and native bovine lactoferrin) was studied to prove the possibility of their use for development of antimicrobial drugs. It was shown that all the substances were active against the Bacillus standard strains. The antibacterial activity was almost independent of the degree of saturation the lactoferrin molecules with Fe3+. The native human lactoferrin was more active than hololactoferrin against Candida when evaluated by the minimum inhibitory concentration (MIC). Fe(3+)-Non aturated recombinant human lactoferrin demonstrated the antimicrobial activity (by MIC) similar to that of the native human lactoferrin. The results showed that native and recombinant human lactoferrins might be used for the development of intravenous and intracavitary dosage forms, while the native bovine lactoferrin could be useful in development of oral drugs.  相似文献   

5.
The specificity by which Haemophilus species acquired iron from transferrin (TF) was investigated. In a plate bioassay H. influenzae used iron bound to human, bovine and rabbit TFs but not mouse, rat, dog, horse, guinea-pig, pig or ovo- TFs or human and bovine lactoferrins. In contrast, H. pleuropneumoniae used iron only from pig TF whilst H. parainfluenzae was unable to utilize iron bound to any of the human or animal TFs tested. The inhibition of growth imposed on H. influenzae type b strain Eagan by the addition of the synthetic iron chelator EDDA to the culture medium was reversed by 30% iron-saturated human TF added directly to the medium but not when the TF was contained inside a dialysis bag. Dot-blotting of whole cells revealed that human TF bound to the surface of bacteria cultured in iron-restricted but not in iron-plentiful media. Incubation of whole bacterial cells in the presence of the proteolytic enzyme trypsin also abolished TF-binding activity, suggesting that the TF receptor was a protein. In competition dot blotting experiments, human and bovine but not rabbit, dog, mouse or guinea-pig TFs blocked the binding of a horseradish peroxidase--human TF conjugate. SDS-PAGE and Western blotting of outer membranes revealed the presence of a TF-binding protein of approximately 72 kDa. These results suggest that the acquisition of TF-bound iron by H. influenzae type b probably involves a direct interaction with an outer-membrane protein which shows some TF-species specificity.  相似文献   

6.
Ovotransferrin (formerly conalbumin) is an iron-binding protein present in birds. It belongs to the transferrin family and shows about 50% sequence homology with mammalian serum transferrin and lactoferrin. This protein has been demonstrated to be capable of delivering iron to cells and of inhibiting bacterial multiplication. However, no antiviral activity has been reported for ovotransferrin, although the antiviral activity of human and bovine lactoferrins against several viruses, including human herpes simplex viruses, has been well established. In this report, the antiviral activity of ovotransferrin towards chicken embryo fibroblast infection by Marek's disease virus (MDV), an avian herpesvirus, was clearly demonstrated. Ovotransferrin was more effective than human and bovine lactoferrins in inhibiting MDV infection and no correlation between antiviral efficacy and iron saturation was found. The observations reported here are of interest from an evolutionary point of view since it is likely that the defensive properties of transferrins appeared early in evolution. In birds, the defensive properties of ovotransferrin remained joined to iron transport functions; in mammals, iron transport functions became peculiar to serum transferrin, and the defensive properties towards infections were optimised in lactoferrin.  相似文献   

7.
Characterization of lactoferrin binding by Aeromonas hydrophila.   总被引:3,自引:0,他引:3       下载免费PDF全文
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

8.
Various lactoferrin preparations (iron-saturated and iron-depleted human milk lactoferrins and bovine milk and colostrum lactoferrins) were bound by Aeromonas hydrophila. Binding was (i) reversible (65% of bound lactoferrin was displaced by unlabeled lactoferrin), (ii) specific (lactoferrin but not other iron-containing glycoproteins such as ferritin, transferrin, hemoglobin, and myoglobin inhibited binding), and (iii) significantly reduced by pepsin and neuraminidase treatment of the bacteria. The glycosidic domains of the lactoferrin molecule seem to be involved in binding since precursor monosaccharides of the lactoferrin oligosaccharides (mannose, fucose, and galactose) and glycoproteins which have homologous glycosidic moieties similar to those of the lactoferrin oligosaccharides (asialofetuin or fetuin) strongly inhibited lactoferrin binding. A. hydrophila also binds transferrin, ferritin, cytochrome c, hemin, and Congo red. However, binding of these iron-containing compounds seems to involve bacterial surface components different from those required for lactoferrin binding. Expression of lactoferrin binding by A. hydrophila was influenced by culture conditions. In addition, there was an inverse relationship between lactoferrin binding and siderophore production by the bacterium.  相似文献   

9.
1. The biochemical properties of bovine, goat and sheep lactoferrin were compared. Molecular weights of the three lactoferrins were estimated to be 78,000 to 80,000 as determined by SDS-PAGE. By IEF, microheterogeneity was observed for all of them. 2. Partial antigenic identity was observed between bovine lactoferrin and goat or sheep lactoferrin by immunodiffusion method. 3. CD spectra at the u.v. region of the three lactoferrins suggested their similar secondary and tertiary structural profiles. 4. Reactivities with peroxidase-conjugated lectins showed that the carbohydrate compositions of the three ruminants' lactoferrin were the same but not identical with that of human lactoferrin.  相似文献   

10.
  • 1.1. Isoelectric points of human and bovine lactoferrins were evaluated by Rotofor and chromatofocusing analysis.
  • 2.2. By Rotofor, the isoelectric value of human lactoferrin fraction was determined at 8.7 and that of bovine lactoferrin at 8.8.
  • 3.3. By chromatofocusing analysis, human and bovine lactoferrins showed different elution patterns. Human lactoferrin was eluted at pH 6.8-8 and bovine lactoferrin eluted at pH 8.2–8.9.
  相似文献   

11.
Human lactoferrins isolated from neutrophilic leucocytes and milk by CM-Sephadex chromatography were similar in Mr (76000) and pI (8.7). Upon acidification, both proteins released their two Fe3+ ions/molecule in a similar biphasic way. Both proteins intravenously injected into mice were cleared from plasma at the same rate. The maximal uptakes by the liver, which occurred 5 min after injection, were inhibited to the same extent by milk lactoferrin used as a competitor.  相似文献   

12.
13.
cDNA clones encoding the entire porcine lactoferrin protein were isolated and sequenced. The porcine lactoferrin cDNA sequence presented here is 2259bp in length and encodes a leader peptide of 19 amino acids and a mature protein of 684 amino acids. Comparisons with other lactoferrins indicate a single glycosylation site. The iron- and anion-binding sites, and the cysteine residues involved in disulphide bonds, are conserved between the lactoferrin proteins.  相似文献   

14.
Structure, function and flexibility of human lactoferrin   总被引:2,自引:0,他引:2  
X-ray structure analyses of four different forms of human lactoferrin (diferric, dicupric, an oxalate-substituted dicupric, and apo-lactoferrin), and of bovine diferric lactoferrin, have revealed various ways in which the protein structure adapts to different structural and functional states. Comparison of diferric and dicupric lactoferrins has shown that different metals can, through slight variations in the metal position, have different stereochemistries and anion coordination without any significant change in the protein structure. Substitution of oxalate for carbonate, as seen in the structure of a hybrid dicupric complex with oxalate in one site and carbonate in the other, shows that larger anions can be accommodated by small side-chain movements in the binding site. The multidomain nature of lactoferrin also allows rigid body movements. Comparison of human and bovine lactoferrins, and of these with rabbit serum transferrin, shows that the relative orientations of the two lobes in each molecule can vary; these variations may contribute to differences in their binding properties. The structure of apo-lactoferrin demonstrates the importance of large-scale domain movements for metal binding and release and suggests that in solution an equilibrium exists between open and closed forms, with the open form being the active binding species. These structural forms are shown to be similar to those seen for bacterial periplasmic binding proteins, and lead to a common model for the various steps in the binding process.  相似文献   

15.
Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to known bird homologues. A partially different disulphide bridge pattern was found in the Squamata (snakes and lizards). The possibility of a unique interdomain disulphide bridge was predicted for LtrF. Differences were found in iron-binding centers from those of previously known transferrins. Substitutions were found in the iron-chelating residues of StrF and TtrF and in the synergistic anion-binding residues of NtrF. In snakes, the transferrin (PtrF, HtrF and GtrF) N-lobe "dilysine trigger" occurring in all other known transferrins was not found, which indicates a different mechanism of iron release.  相似文献   

16.
Kaliocin-1, a 31-residue synthetic peptide (FFSASCVPGADKGQFPNLCRLCA GTGENKCA), which has shown the antimicrobial activity forms the 152-182 fragment of human lactoferrin (HLf). As the octapeptide FSASCVPG forms the 2-9 fragment of kaliocin-1, in the present study, its conformation in dimethyl sulfoxide-d6 (DMSO-d6) has been determined using two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy as well as restrained molecular dynamics. Sequence specific assignments of all the 1H resonances have been carried out using 2D correlation experiments (2D DQF-COSY, TOCSY and ROESY). In dimethyl sulfoxide-d6 at 25 degrees C, the octapeptide adopts a predominantly extended backbone conformation. The calculated structure resembles closely with the reported structure of the corresponding fragment of HLf. The peptide also has sequence and structural similarity with the corresponding fragments of lactoferrins from other organisms.  相似文献   

17.
The inhibitory effect of bovine lactoferrin (BLf) saturated with ferric, manganese or zinc ions, on the infection of Vero cells by human herpes simplex virus type 1 (HSV1) and 2 (HSV2) was investigated. Viral infectivity determined by intracellular antigen synthesis and plaque formation was efficiently inhibited by metal saturated lactoferrins in a dose-dependent manner. Effective BLf concentrations which reduced the infection by 50% ranged from 5.2 to 31 mug ml and were far below the cytotoxicity threshold. Fe BLf and Mn BLf exhibited selectivity indexes higher than Zn BLf and apoBLf for both viruses and the effect was mainly directed towards the early steps of infection. The slight viral inhibition shown by the citrate complexes of the different metals could indicate that the antiviral effect was not significantly influenced by Fe , Mn or Zn ions delivered by BLf into the cells. © Rapid Science 1998  相似文献   

18.
Lactoferrin was purified from human seminal fluid obtained from the semen bank. The purified samples were saturated with Fe3+ and crystallized by microdialysis method. The crystals belong to orthorhombic space group P21212, with a = 55.9 Angstrom. b = 97.2 Angstrom, c = 156.1 Angstrom and Z = 4. The structure was determined with molecular replacement method and refined to an R factor of 18.7% for all the data to 3.4 Angstrom resolution. The overall structure of seminal lactoferrin is similar to human colostrum lactoferrin. The amino acid sequence of seminal lactoferrin shows that it has one amino acid less than human colostrum lactoferrin and the structure of its N-terminal region is far more ordered than other lactoferrins. The structure of the iron-binding site and its immediate surroundings indicate well defined features.  相似文献   

19.
  • 1.1. Platelets bind specifically to lactoferrin. A significant similarity between human lactoferrin and some bovine milk proteins has been established.
  • 2.2. Because of the structural homology of lactoferrin and cows milk proteins they are able to influence lactoferrins regulatory function on the level of its binding to membrane receptors on platelets.
  • 3.3. An inhibitory effect of bovine α-lactalbumin and of β-lactoglobulin on lactoferrin-receptor interaction was shown.
  • 4.4. Bovine α-lactalbumin competes with lactoferrin for the binding sites.
  • 5.5. Scatchard plot analysis of data shows one binding site for lactoferrin in the presence of α-lactalbumin with an affinity constant, Ka = 0.46 × 109 mol/1 and 335 receptors/cell.
  • 6.6. The inhibitory effect of β-lactoglobulin reaches 62% and is different for the common fraction ⨿-lactoglobulin and the genetic variants β-lactoglobulin A and B.
  • 7.7. β-lactoglobulin does not compete with lactoferrin for the membrane receptors.
  • 8.8. Bovine casein and egg lysozyme stimulate 59Fe-lactoferrin binding to the receptors. The mechanism of these effects is still unknown.
  • 9.9. Tested alimentary antigens are able to interact with lactoferrin and also with some platelet membrane structures.
  • 10.10. Established changes in lactoferrin binding to the platelet membrane might be in relation to lactoferrins regulatory function and (or) eliminating mechanisms of these alimentary antigens.
  相似文献   

20.
Lactoferrin and Iron: structural and dynamic aspects of binding and release   总被引:1,自引:1,他引:0  
Lactoferrin (Lf) has long been recognized as a member of the transferrin family of proteins and an important regulator of the levels of free iron in the body fluids of mammals. Its ability to bind ferric iron with high affinity (KD approximately 10(-20) M) and to retain it to low pH gives the protein bacteriostatic and antioxidant properties. This ability can be well understood in terms of its three dimensional (3D) structure. The molecule is folded into two homologous lobes (N- and C-lobes) with each lobe binding a single Fe3+ ion in a deep cleft between two domains. The iron sites are highly conserved, and highly favorable for iron binding. Iron binding and release are associated with large conformational changes in which the protein adopts either open or closed states. Comparison of available apolactoferrin structures suggests that iron binding is dependent on the dynamics of the open state. What triggers release of the tightly bound iron, however, and why lactoferrin retains iron to much lower pH than its serum homologue, transferrin, has been the subject of much speculation. Comparisons of structural and functional data on lactoferrins and transferrins now suggest that the key factor comes from cooperative interactions between the two lobes of the molecule, mediated by two alpha-helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号