首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The association between anemonefish and anemone is a classical example of mutualism in coral reefs. Although mutualism is probably the key innovation that triggered the adaptive radiation of anemonefish into a wide range of habitats, the coevolutionary history between the groups has not been thoroughly tested in a phylogenetic framework. We examined the evolutionary history of the association via distance-based (Parafit and PACo) and event-based methods (Core-PA, Jane). Mitochondrial DNA sequences (COI mtDNA, Cytb, 16S rDNA and 12S rDNA) were used to reconstruct the phylogenies of tropical Amphiprion species and their host anemones by using maximum likelihood with best-fit models selected. Neither distance-based analyses nor event-based analyses revealed global significant congruence between the phylogenies of the hosts and the symbionts, and thus no evidence for coevolution between anemone-anemonefish. However, at the individual pair level, the fish showed some dependence on anemone hosts. Even though living in close association and benefiting from each other, the change of genetic composition of one species (anemonefish) does not always evolve in response to changes in the other (anemones). These findings expand our understanding of the pattern and the role of evolutionary events to allow a better prediction of the future of the anemonefish-anemone relationship.  相似文献   

2.
The ecological performance of the sea anemone Heteractis magnifica was examined during a 36-month experiment with respect to season and the presence and numbers of a mutualist (orange-fin anemonefish Amphiprion chrysopterus). Anemones primarily grew during the autumn, with most asexual reproduction occurring in winter; mortality was not strongly seasonal. Individual growth rates did not differ between anemones harboring one or two anemonefish, but these rates were three times faster than for anemones lacking Amphiprion. Anemones with two anemonefish had the highest fission rate, whereas those without anemonefish had the lowest. By contrast, anemones that were not defended by anemonefish suffered higher-than-expected mortality. As a consequence, anemones with two Amphiprion had the greatest net increase in surface area, and those lacking anemonefish had a negligible gain that was statistically indistinguishable from zero after three years. Anemonefish not only enhanced anemone survivorship as previously believed, they also fostered faster growth and more frequent asexual reproduction.  相似文献   

3.
Twenty-six species of anemonefish of the genera Amphiprion and monospecific Premnas, use only 10 species of anemones as hosts in the wild (Families: Actiniidae, Stichodactylidae and Thalassianthidae). Of these 10 anemone species some are used by multiple species of anemonefish while others have only a single anemonefish symbiont. Past studies have explored the different patterns of usage between anemonefish species and anemone species; however the evolution of this relationship remains unknown and has been little studied over the past decade. Here we reopen the case, comparing the toxicity of crude venoms obtained from anemones that host anemonefish as a way to investigate why some anemone species are used as a host more than others. Specifically, for each anemone species we investigated acute toxicity using Artemia francisca (LC50), haemolytic toxicity using ovine erythrocytes (EC50) and neurotoxicity using shore crabs (Ozius truncatus). We found that haemolytic and neurotoxic activity varied among host anemone species. Generally anemone species that displayed greater haemolytic activity also displayed high neurotoxic activity and tend to be more toxic on average as indicated by acute lethality analysis. An overall venom toxicity ranking for each anemone species was compared with the number of anemonefish species that are known to associate with each anemone species in the wild. Interestingly, anemones with intermediate toxicity had the highest number of anemonefish associates, whereas anemones with either very low or very high toxicity had the fewest anemonefish associates. These data demonstrate that variation in toxicity among host anemone species may be important in the establishment and maintenance of anemonefish anemone symbiosis.  相似文献   

4.
Large ectosymbionts (especially fishes and crustaceans) may have major impacts on the physiology of host cnidarians (sea anemones and corals), but these effects have not been well quantified. Here we describe impacts on giant sea anemone hosts (Entacmaea quadricolor) and their endosymbiotic zooxanthellae (Symbiodinium spp.) from the excretion products of anemonefish guests (Amphiprion bicinctus) under laboratory conditions. Starved host anemones were maintained with anemonefish, ammonia supplements (= NH3 gas and NH4+ ion), or neither for 2 mo. In the presence of external ammonia supplements or resident anemonefish, the zooxanthellae within host anemones increased in abundance (173% and 139% respectively), and provided the hosts with energy that minimized host body size loss. In contrast, anemones cultured with neither ammonia nor anemonefish harbored significantly lower abundances of zooxanthellae (84% of initial abundance) and decreased > 60% in body size. Although they maintained higher zooxanthella abundances, anemones cultured with either ammonia supplements or resident anemonefish exhibited significantly lower ammonia uptake rates (0.065 ± 0.005 µmol g- 1 h- 1, and 0.052 ± 0.018 µmol g- 1 h- 1 respectively) than did control anemones (0.119 ± 0.009 µmol g- 1 h- 1), indicating that their zooxanthellae were more nitrogen sufficient. We conclude that, in this multi-level mutualism, ammonia supplements provide essentially the same level of physiological contribution to host anemones and zooxanthellae as do live resident fish. This nutrient supplement reduces the dependence of the zooxanthellae on host feeding, and allows them to provide abundant photosynthetically-produced energy to the host.  相似文献   

5.
The Manado area (Indonesia–North Sulawesi), a marine high diversity hot-spot, hosts 7 species of anemonefish (family Pomacentridae, subfamily Amphiprioniae) living in symbiosis with 9 species of sea anemones (family Stichodactylidae and Actiniidae). This high biological diversity −27% and 80%, respectively, of the total known diversity of anemonefish and sea anemones—allows us to test different hypotheses focused on the obligate mutualism between anemonefish and sea anemones. In the Manado area, species richness of anemones and anemonefish across several sites was not correlated, but all anemones contained at least one fish individual, and there was a strong positive correlation between the numbers of individual anemonefish and anemones. As expected, each fish species had a preferred anemone host; also a partial niche overlap (Pianka’s Index) was often detected. The analysis of unique species composition suggests that competition is not an important factor determining the presence or absence of particular combinations of either anemonefish or host anemones (no evidence of competitive exclusion). The NODF algorithm showed that, at both a regional and local scale, the interaction between anemonefish and host anemones is not significantly nested, as a result of a combination of local conditions with competition, forcing species that regionally are more generalist to become more specialist.  相似文献   

6.
Theories involving niche diversification to explain high levels of tropical diversity propose that species are more likely to co‐occur if they partition at least one dimension of their ecological niche space. Yet, numerous species appear to have widely overlapping niches based upon broad categorizations of resource use or functional traits. In particular, the extent to which food partitioning contributes to species coexistence in hyperdiverse tropical ecosystems remains unresolved. Here, we use a molecular approach to investigate inter‐ and intraspecific dietary partitioning between two species of damselfish (Dascyllus flavicaudus, Chromis viridis) that commonly co‐occur in branching corals. Species‐level identification of their diverse zooplankton prey revealed significant differences in diet composition between species despite their seemingly similar feeding strategies. Dascyllus exhibited a more diverse diet than Chromis, whereas Chromis tended to select larger prey items. A large calanoid copepod, Labidocera sp., found in low density and higher in the water column during the day, explained more than 19% of the variation in dietary composition between Dascyllus and Chromis. Dascyllus did not significantly shift its diet in the presence of Chromis, which suggests intrinsic differences in feeding behaviour. Finally, prey composition significantly shifted during the ontogeny of both fish species. Our findings show that levels of dietary specialization among coral reef associated species have likely been underestimated, and they underscore the importance of characterizing trophic webs in tropical ecosystems at higher levels of taxonomic resolution. They also suggest that niche redundancy may not be as common as previously thought.  相似文献   

7.
Synopsis In the main habitat of the anemonefishes Amphiprion, their movements between host sea anemones are generally restricted because of the low population density of hosts and high predation pressures. On the contrary, movements of A. clarkii between hosts were usual in the present study area (temperate waters of southern Japan), where host anemones are abundant. The general social unit of the anemonefishes is an isolated group consisting of a monogamous breeding pair and a varying number of nonbreeders. In the present study area, however, monogamous pairs established territories almost contiguous to others and nonbreeders had home ranges on the outskirts of the pairs' territories. The high host population density allows A. clarkii to move between hosts for searching for mates and acquiring additional mates. Most pair bonds lasted for more than 6 months, but 13% of the pairs separated because of migration of a mate to another territory. Bigamy occasionally originated from a penetration into a territory of a breeder by a mated neighbor of the opposite sex after the former's mate loss. Among 18 males who had lost their mates, only 3 changed sex and others re-paired with immigrant females, migrated to unmated females' territories or invaded pairs' territories. In the present study area, sex change to female is not the best way for an unmated male to increase his future reproductive success because of a loss of time spent on sex change and an opportunity to re-pair with new mates larger than himself, but is adaptively maintained as the best of a bad situation for the unmated male.  相似文献   

8.
Food web dynamics are well known to vary with indirect interactions, classic examples including apparent competition, intraguild predation, exploitative competition, and trophic cascades of food chains. Such food web modules entailing predation and competition have been the focus of much theory, whereas modules involving mutualism have received far less attention. We examined an empirically common food web module involving mutualistic (N 2) and parasitic (N 3) consumers exploiting a resource of a basal mutualist (N 1), as illustrated by plants, pollinators, and nectar robbers. This mutualism–parasitism food web module is structurally similar to exploitative competition, suggesting that the module of two consumers exploiting a resource is unstable. Rather than parasitic consumers destabilizing the module through (?,?) indirect interactions, two mechanisms associated with the mutualism can actually enhance the persistence of the module. First, the positive feedback of mutualism favors coexistence in stable limit cycles, whereby (+,?) indirect interactions emerge in which increases in N 2 have positive effects on N 3 and increases in N 3 have negative effects on N 2. This (+,?) indirect interaction arising from the saturating positive feedback of mutualism has broad feasibility across many types of food web modules entailing mutualism. Second, optimization of resource exploitation by the mutualistic consumer can lead to persistence of the food web module in a stable equilibrium. The mutualism–parasitism food web module is a basic unit of food webs in which mutualism favors its persistence simply through density-dependent population dynamics, rather than parasitism destabilizing the module.  相似文献   

9.
Synopsis The 25 species ofAmphiprion and one ofPremnas (family Pomacentridae) are obligate symbionts of 10 species of facultatively symbiotic sea anemones. Throughout the tropical Indo-West Pacific range of the relationship, a fish species inhabits only certain of the hosts potentially available to it. This specificity is due to the fishes. Five fishes occupy six sea anemone species at Lizard Island, Great Barrier Reef, Australia.Entacmaea quadricolor harborsP. biaculeatus, A. melanopus andA. akindynos. Adults ofPremnas occur deeper than about 3 m in large, primarily solitary actinians; juveniles may occupy peripheral members ofEntacmaea clones in shallow water. Specimens ofA. melanopus live exclusively in clonal anemones, which are found no deeper than 3 m. Most individuals ofA. akindynos inEntacmaea are juveniles, occurring shallow and deep, in solitary anemones or at the margins of clones. Interspecific as well as intraspecific social control of growth may be responsible for keeping fish small at clone fringes. Conspicuous specimens ofE. quadricolor depend upon their anemonefish to survive. Actinians cleared of symbionts disappeared within 24 h, probably having been eaten by reef fishes.Entacmaea, the most abundant and widespread host actinian at Lizard Island and throughout the range of the association, is also arguably the most attractive to anemonefishes. I believe its vulnerability to predation was a factor in its evolving whatever makes it desirable to fishes. Experimental transfers pitted fish of one species against those of another, controlling for ecophenotype of host, and sex, size and number of fish. Competitive superiority was in the same order as abundance and over-all host specificity:P. biaculeatus, A. melanopus, A. akindynos. At least three factors are necessary to explain patterns of species specificity - innate or learned host preference, competition, and stochastic processes.  相似文献   

10.
Intimate knowledge of both partners in a mutualism is necessary to understand the ecology and evolution of each partner, and to manage human impacts that asymmetrically affect one of the partners. Although anemonefishes and their host anemones are iconic mutualists and widely sought by ornamental fisheries, the degree to which anemones depend on anemonefishes, and thus the colony-level effects of collecting anemonefishes, is not well understood. We tracked the size and abundance of anemone Entacmaea quadricolor and anemonefish Amphiprion melanopus colonies for 3 yr after none, some, or all of the resident anemonefish were experimentally removed. Total and partial removal of anemonefish had rapid and sustained negative effects on growth, reproduction and survival of anemones, as well as cascading effects on recruitment and productivity of anemonefish in the remaining colony. As predicted, total removal of anemonefish caused acute declines in size and abundance of anemones, although most anemone colonies (76 %) slowly resumed growth and reproduction after the arrival of anemonefish recruits, which subsequently grew and defended the hosts. Partial removal of anemonefish had similar but typically less severe effects on anemones. Remarkably, the colony-level effects on anemones and anemonefish were proportional to the size and number of anemonefish that were experimentally removed. In particular, anemone survival and anemonefish productivity were highest when one or more adult anemonefish remained in the colony, suggesting that adult fish not only enhanced the protection of anemones, but also increased the recruitment and/or survival of conspecifics. We conclude that the relationship between E. quadricolor and A. melanopus is not only obligate, but also demographically rigid and easily perturbed by anemonefish fisheries. Clearly, these two species must be managed together as a unit and with utmost precaution. To this end, we propose several tangible management actions that will help to minimize fishing effects.  相似文献   

11.
杨丽媛  王瑞武 《生物多样性》2020,28(11):1324-1047
榕树及其传粉榕小蜂是自然界中目前所知道的关系最为紧密的互利共生系统之一。随着研究的深入, 越来越多的证据发现榕树-传粉榕小蜂之间互惠合作的过程中存在着复杂的竞争和对抗关系, 例如榕树与传粉榕小蜂之间对公共资源的竞争、传粉欺骗与宿主对传粉者的惩罚、榕树与传粉小蜂之间的“军备竞赛”等。在相互竞争或者对抗关系中, 双方表现出非对称性相互作用。其非对称性关系主要表现出如下3个特征: (1)收益不对称, 即榕树(宿主)与传粉榕小蜂(共生体)之间在资源利用等方面的实力不对称; (2)榕树与传粉榕小蜂之间的信息不对称; (3)进化速率不对称。这些非对称的相互作用可能导致种群的波动、榕树与传粉榕小蜂相互适应和进化策略的变化。因此, 理解榕树与传粉榕小蜂之间的非对称交互作用有助于理解为什么合作和冲突在互利共生关系中经常能同时存在, 也将有助于解释榕树-传粉榕小蜂种间相互关系和物种的多样性。  相似文献   

12.
Porat  D.  Chadwick-Furman  N. E. 《Hydrobiologia》2004,530(1-3):513-520
The symbiosis between giant sea anemones and anemonefish on coral reefs is well known, but little information exists on impacts of this interaction on the sea anemone host. On a coral reef at Eilat, northern Red Sea, individuals of the sea anemone Entacmaea quadricolor that possessed endemic anemonefish Amphiprion bicinctus expanded their tentacles significantly more frequently than did those lacking anemonefish. When anemonefish were experimentally removed, sea anemone hosts contracted partially. Within 1–4 h in most cases, individuals of the butterflyfish Chaetodon fasciatus arrived and attacked the sea anemones, causing them to contract completely into reef holes. Upon the experimental return of anemonefish, the anemone hosts re-expanded. The long-term growth rate and survival of the sea anemones depended on the size and number of their anemonefish. Over several years, sea anemones possessing small or no fish exhibited negative growth (shrinkage) and eventually disappeared, while those with at least one large fish survived and grew. We conclude that host sea anemones sense the presence of symbiotic anemonefish via chemical and/or mechanical cues, and react by altering their expansion behavior. Host sea anemones that lack anemonefish large enough to defend them against predation may remain contracted in reef holes, unable to feed or expose their tentacles for photosynthesis, resulting in their shrinkage and eventual death.  相似文献   

13.
Despite the ecological importance of anemonefish symbioses, little is known about how nutritional contributions from anemonefish interact with sea anemone physiology and Symbiodinium (endosymbiotic dinoflagellate) genetic identity under field conditions. On Red Sea coral reefs, we measured variation in ammonia concentrations near anemones, excretion rates of anemonefish, physiological parameters of anemones and Symbiodinium, and genetic identity of Symbiodinium within anemones. Ammonia concentrations among anemone tentacles were up to 49% above background levels, and anemonefish excreted ammonia significantly more rapidly after diurnal feeding than they did after nocturnal rest, similar to their excretion patterns under laboratory conditions. Levels of 4 physiological parameters (anemone protein content, and Symbiodinium abundance, chlorophyll a concentration, and division rate) were similar to those known for laboratory-cultured anemones, and in the field did not depend on the number of anemonefish per anemone or depth below sea surface. Symbiodinium abundance varied significantly with irradiance in the shaded reef microhabitats occupied by anemones. Most anemones at all depths harbored a novel Symbiodinium 18S rDNA variant within internal transcribed spacer region 2 (ITS2) type C1, while the rest hosted known ITS2 type C1. Association with Symbiodinium Clade C is consistent with the symbiotic pattern of these anemones on other Indo-Pacific reefs, but the C1 variant of Symbiodinium identified here has not been described previously. We conclude that in the field, anemonefish excrete ammonia at rapid rates that correlate with elevated concentrations among host anemone tentacles. Limited natural variation in anemonefish abundance may contribute to consistently high levels of physiological parameters in both anemones and Symbiodinium, in contrast to laboratory manipulations where removal of fish causes anemones to shrink and Symbiodinium to become less abundant.  相似文献   

14.
In this study we tested for trade-offs between the benefit arbuscular mycorrhizal (AM) fungi provide for hosts and their competitive ability in host roots, and whether this potential trade-off shifts in the presence of a plant stress (herbivory). We used three species of AM fungi previously determined to vary in host growth promotion and spore production in association with host plants. We found that these AM fungal species competed for root space, and the best competitor, Scutellospora calospora, was the worst mutualist. In addition, the worst competitor, Glomus white, was the best mutualist. Competition proved to have stronger effects on fungal infection patterns than herbivory, and competitive dominance was not altered by herbivory. We found a similar pattern in a previous test of competition among AM fungi, and we discuss the implications of these results for the persistence of the mutualism and feedbacks between AM fungi and their plant hosts.  相似文献   

15.
1. Energy fluxes between ants and plants have been a focal point for documenting mutualistic behaviour. Plants can provide resources to ants through the production of extrafloral nectaries. In exchange, ants can fertilise plants through their nutrient‐ and microbe‐rich refuse. 2. Here, we test a potential facultative mutualism between the carton‐nesting canopy ant, Azteca trigona, and their host trees. Through observational and experimental approaches, this study documents how nutrient transfer provides a basis for this beneficial ant–plant relationship. 3. In a greenhouse experiment, fertilisation with sterilised refuse (i.e. nutrients only) increased seedling growth three‐fold, while the refuse with its natural microbial community increased growth 11‐fold. 4. Total root density was doubled in refuse piles compared with the surrounding area in situ. On average, refuse provides host trees and the surrounding plant community with access to a > 800% increase in N, P and K relative to leaf litter. 5. Azteca trigona preferentially nests in trees with extrafloral nectaries and on large, longer‐lived tree species. 6. Given the nutrient‐poor nature of the Neotropics, host trees probably experience significant benefits from refuse fertilisation. Conversely, A. trigona benefit from long‐term stable structural support for nests and access to nutrient‐rich extrafloral nectaries. Without clear costs to either A. trigona or host trees, it is proposed that these positive interactions are preliminary evidence of a facultative mutualism.  相似文献   

16.
The protandrous anemonefish Amphiprion frenatus often forms a group consisting of a large female, a small male, and a smaller nonbreeder at an isolated single host anemone, where home ranges of subordinates were covered with the female's home range. Within the group, the dominant individuals suppress the growth of subordinates, resulting in large size differences. The spacing pattern and body size composition of A. frenatus on colonial hosts were investigated in Ishigaki Island, Okinawa, Japan. Six breeding pairs and 14 nonbreeders inhabited a colony of 157 anemones. Each pair maintained a territory in which pair members used different hosts. Nonbreeders had unstable home ranges on the outskirts of or in the pairs' territories. Body size differences between males and females in pairs and between males and nonbreeders were small. The small size differences in the colony of hosts are caused by reduced suppression of growth of subordinates by the dominant individuals. The total area of host anemones largely affects spacing pattern and social suppression of the anemonefish.  相似文献   

17.
Mutualisms are interactions between two species in which the fitnesses of both symbionts benefit from the relationship. Although examples of mutualism are ubiquitous in nature, the ecology, evolution, and stability of mutualism has rarely been studied in the broader, multi-species community context in which they occur. The pollination mutualism between figs and fig wasps provides an excellent model system for investigating interactions between obligate mutualists and antagonists. Compared to the community of non-pollinating fig wasps that develop within fig inflorescences at the expense of fig seeds and pollinators, consequences of interactions between female pollinating wasps and their host-specialist nematode parasites is much less well understood. Here we focus on a tri-partite system comprised of a fig (Ficus petiolaris), pollinating wasp (Pegoscapus sp.), and nematode (Parasitodiplogaster sp.), investigating geographical variation in the incidence of attack and mechanisms through which nematodes may limit the fitness of their wasp hosts at successive life history stages. Observational data reveals that nematodes are ubiquitous across their host range in Baja California, Mexico; that the incidence of nematode infection varies across seasons within- and between locations, and that infected pollinators are sometimes associated with fitness declines through reduced offspring production. We find that moderate levels of infection (1–9 juvenile nematodes per host) are well tolerated by pollinator wasps whereas higher infection levels (≥10 nematodes per host) are correlated with a significant reduction in wasp lifespan and dispersal success. This overexploitation, however, is estimated to occur in only 2.8% of wasps in each generation. The result that nematode infection appears to be largely benign – and the unexpected finding that nematodes frequently infect non-pollinating wasps – highlight gaps in our knowledge of pollinator-Parasitodiplogaster interactions and suggest previously unappreciated ways in which this nematode may influence fig and pollinator fitness, mutualism persistence, and non-pollinator community dynamics.  相似文献   

18.
Ashton IW  Miller AE  Bowman WD  Suding KN 《Oecologia》2008,156(3):625-636
Plant resource partitioning of chemical forms of nitrogen (N) may be an important factor promoting species coexistence in N-limited ecosystems. Since the microbial community regulates N-form transformations, plant partitioning of N may be related to plant–soil feedbacks. We conducted a 15N tracer addition experiment to study the ability of two alpine plant species, Acomastylis rossii and Deschampsia caespitosa, to partition organic and inorganic forms of N. The species are codominant and associated with strong plant–soil feedbacks that affect N cycling. We manipulated interspecific interactions by removing Acomastylis or Deschampsia from areas where the species were codominant to test if N uptake patterns varied in the presence of the other species. We found that Deschampsia acquired organic and inorganic N more rapidly than Acomastylis, regardless of neighbor treatment. Plant N uptake—specifically ammonium uptake—increased with plant density and the presence of an interspecific neighbor. Interestingly, this change in N uptake was not in the expected direction to reduce niche overlap and instead suggested facilitation of ammonium use. To test if N acquisition patterns were consistent with plant–soil feedbacks, we also compared microbial rhizosphere extracellular enzyme activity in patches dominated by one or the other species and in areas where they grew together. The presence of both species was generally associated with increased rhizosphere extracellular enzyme activity (five of ten enzymes) and a trend towards increased foliar N concentrations. Taken together, these results suggest that feedbacks through the microbial community, either in response to increased plant density or specific plant neighbors, could facilitate coexistence. However, coexistence is promoted via enhanced resource uptake rather than reduced niche overlap. The importance of resource partitioning to reduce the intensity of competitive interactions might vary across systems, particularly as a function of plant-soil feedbacks.  相似文献   

19.
A. Bradley Duthie  John D. Nason 《Oikos》2016,125(11):1597-1606
Mutualism is ubiquitous in nature, and nursery pollination mutualisms provide a system well suited to quantifying the benefits and costs of symbiotic interactions. In nursery pollination mutualisms, pollinators reproduce within the inflorescence they pollinate, with benefits and costs being measured in the numbers of pollinator offspring and seeds produced. This type of mutualism is also typically exploited by seed‐consuming non‐pollinators that obtain resources from plants without providing pollination services. Theory predicts that the rate at which pollen‐bearing ‘foundresses’ visit a plant will strongly affect the plant's production of pollinator offspring, non‐pollinator offspring, and seeds. Spatially aggregated plants are predicted to have high rates of foundress visitation, increasing pollinator and seed production, and decreasing non‐pollinator production; very high foundress visitation may also decrease seed production indirectly through the production of pollinators. Working with a nursery mutualism comprised of the Sonoran Desert rock fig, Ficus petiolaris, and host‐specific pollinating and non‐pollinating fig wasps, we use linear models to evaluate four hypotheses linking species interactions to benefits and costs: 1) foundress density increases with host‐tree connectivity, 2) pollinator production increases with foundress density, and 3) non‐pollinator production and 4) seed production decrease with pollinator production. We also directly test how tree connectivity affects non‐pollinator production. We find strong support for our four hypotheses, and we conclude that tree connectivity is a key driver of foundress visitation, thereby strongly affecting spatial distributions in the F. petiolaris community. We also find that foundress visitation decreases at the northernmost edge of the F. petiolaris range. Finally, we find species‐specific effects of tree connectivity on non‐pollinators to be strongly correlated with previously estimated non‐pollinator dispersal abilities. We conclude that plant connectivity is highly important for predicting plant‐pollinator‐exploiter dynamics, and discuss the implications of our results for species coexistence and adaptation.  相似文献   

20.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号