首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we discuss the use of imaging to visualize the spatiotemporal organization of network activity in the developing spinal cord of the chick embryo and the neonatal mouse. We describe several different methods for loading ion- and voltage-sensitive dyes into spinal neurons and consider the advantages and limitations of each one. We review work in the chick embryo, suggesting that motoneurons play a critical role in the initiation of each cycle of spontaneous network activity and describe how imaging has been used to identify a class of spinal interneuron that appears to be the avian homolog of mammalian Renshaw cells or 1a-inhibitory interneurons. Imaging of locomotor-like activity in the neonatal mouse revealed a wave-like activation of motoneurons during each cycle of discharge. We discuss the significance of this finding and its implications for understanding how locomotor-like activity is coordinated across different segments of the cord. In the last part of the review, we discuss some of the exciting new prospects for the future.  相似文献   

2.
We have examined the cellular and synaptic mechanisms underlying the genesis of alternating motor activity in the developing spinal cord of the chick embryo. Experiments were performed on the isolated lumbosacral cord maintained in vitro. Intracellular and whole cell patch clamp recordings obtained from sartorius (primarily a hip flexor) and femorotibialis (a knee extensor) motoneurons showed that both classes of cell are depolarized simultaneously during each cycle of motor activity. Sartorius motoneurons generally fire two bursts/cycle, whereas femorotibialis motoneurons discharge throughout their depolarization, with peak activity between the sartorius bursts. Voltage clamp recordings revealed that inhibitory and excitatory synaptic currents are responsible for the depolarization of sartorius motoneurons, whereas femorotibialis motoneurons are activated principally by excitatory currents. Early in development, the dominant synaptic currents in rhythmically active sartorius motoneurons appear to be inhibitory so that firing is restricted to a single, brief burst at the beginning of each cycle. In E7-E13 embryos, lumbosacral motor activity could be evoked following stimulation in the brainstem, even when the brachial and cervical cord was bathed in a reduced calcium solution to block chemical synaptic transmission. These findings suggest that functional descending connections from the brainstem to the lumbar cord are present by E7, although activation of ascending axons or electrical synapses cannot be eliminated. Ablation, optical, and immunocytochemical experiments were performed to characterize the interneuronal network responsible for the synaptic activation of motoneurons. Ablation experiments were used to show that the essential interneuronal elements required for the rhythmic alternation are in the ventral part of the cord. This observation was supported by real-time Fura-2 imaging of the neuronal calcium transients accompanying motor activity, which revealed that a high proportion of rhythmically active cells are located in the ventrolateral part of the cord and that activity could begin in this region. The fluorescence transients in the majority of neurons, including motoneurons, occurred in phase with ventral root or muscle nerve activity, implying synchronized neuronal action in the rhythm generating network. Immunocytochemical experiments were performed in E14-E16 embryos to localize putative inhibitory interneurons that might be involved in the genesis or patterning of motor activity. The results revealed a pattern similar to that seen in other vertebrates with the dorsal horn containing neurons with gamma-aminobutyric acid (GABA)-like immunoreactivity and the ventral and intermediate regions containing neurons with glycine-like immunoreactivity.  相似文献   

3.
The early development of interneurons in the chick embryo spinal cord was studied using a monoclonal antibody against a neuron-specific beta-tubulin isoform. Early developing interneurons were divided into two cell groups on the basis of their location and the pattern of growth of their axons. One group is composed of cells that establish a primitive longitudinal pathway (PL-cells), whereas the other group contains cells constituting a circumferential pathway (C-cells). The onset of axonal development in both cell groups occurs at stage (st.) 15 (embryonic day, (E), 2) in the branchial segments, which is prior to axonogenesis of motoneurons. PL-cells develop in the region between the floor plate and the motoneuron nucleus. Their axons are the first neuronal processes ('pioneer axons') to arrive in the ventrolateral marginal zone and they project both rostrally and caudally to establish a primitive longitudinal association pathway at the ventrolateral surface of the neural tube. This pathway is formed before axons of C-cells arrive in the ventrolateral region. The first C-cells are initially located in the most dorsal portion of the neural tube, whereas later appearing C-cells are also located in both intermediate and ventral regions of the neural tube. The axons of C-cells project ventrally, without fasciculating, along the lateral border of the neural tube. Some of their axons enter the ipsilateral ventrolateral longitudinal pathway at st. 17. We often observed apparent contacts and interactions between preexisting axons of PL-cells and newly arriving axons of C-cells. The axons of commissural C-cells first enter the floor plate at st. 17 and cross the midline at st. 18. Axons of C cells begin to join the contralateral ventrolateral longitudinal pathway at st. 18+ to st. 19. In the floor plate region, contacts between growth cones and axons were often observed. However, axons in the floor plate at these stages were not fasciculated. These observations establish the timing and pattern of growth of axons from two specific populations of early developing interneurons in the chick spinal cord. Additionally, we have identified an early and apparently previously undescribed 'pioneer' pathway that constitutes the first longitudinal pathway in the chick spinal cord.  相似文献   

4.
The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering ‘tool box’ for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation.  相似文献   

5.
In order to analyse the spinal tract formation at early stages of development in avian embryos, chick-quail spinal cord chimeras were prepared and species-specific monoclonal antibodies (MAb) were developed. MAbs CN, QN and CQN uniquely stained chick, quail, and both chick and quail nervous tissues, respectively. All three antibodies appeared to bind to the same membrane molecule, but to different epitopes. Cord reversal revealed the features of axonal growth of both cord interneurons and dorsal root ganglion cells. Quail cord interneurons grew along an originally ventral marginal layer in the quail cord transplanted in a reversed position, then turned toward the ventral side at the boundary between the graft and the host, and grew along the host chick ventral marginal layer. Central axons of dorsal root ganglia were restricted to the ventrolateral region of the cord which originally formed the dorsal funiculus. These results suggest that cord interneurons and dorsal root ganglion cells actively select to grow along specific regions of the cord and that spinal tract formation appears to be determined by cord cells, and not by sclerotome cells.  相似文献   

6.
7.
Spontaneous activity regulates many aspects of central nervous system development. We demonstrate that in the embryonic chick hindbrain, spontaneous activity is expressed between embryonic days (E) 6–9. Over this period the frequency of activity decreases significantly, although the events maintain a consistent rhythm on the timescale of minutes. At E6, the activity is pharmacologically dependent on serotonin, nACh, GABAA, and glycine input, but not on muscarinic, glutamatergic, or GABAB receptor activation. It also depends on gap junctions, t‐type calcium channels and TTX‐sensitive ion channels. In intact spinal cord‐hindbrain preparations, E6 spontaneous events originate in the spinal cord and propagate into lateral hindbrain tissue; midline activity follows the appearance of lateral activity. However, the spinal cord is not required for hindbrain activity. There are two invariant points of origin of activity along the midline, both within the caudal group of serotonin‐expressing cell bodies; one point is caudal to the nV exit point while the other is caudal to the nVII exit point. Additional caudal midline points of origin are seen in a minority of cases. Using immunohistochemistry, we show robust differentiation of the serotonergic raphe near the midline at E6, and extensive fiber tracts expressing GAD65/67 and the nAChR in lateral areas; this suggests that the medial activity is dependent on serotonergic neuron activation, while lateral activity requires other transmitters. Although there are differences between species, this activity is highly conserved between mouse and chick, suggesting that developmental event(s) within the hindbrain are dependent on expression of this spontaneous activity. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

8.
There is general agreement that last-order premotor interneurons-a set of neurons that integrate activities generated by the spinal motor apparatus, sensory information and volleys arising from higher motor centres, and transmit the integrated signals to motoneurons through monosynaptic contacts-play crucial roles in the initiation and maintenance of spinal motor activities. Here, we demonstrate the development, neurochemical properties, and axonal projections of a unique group of last-order premotor interneurons within the ventrolateral aspect of the lateral funiculus of the chick lumbosacral spinal cord. Neurons expressing immunoreactivity for neuron-specific enolase were first detected in the ventrolateral white matter at embryonic day 9 (E9). The numbers of immunoreactive neurons were significantly increased at E10-E12, while most of them were gradually concentrated in small segmentally arranged nuclei (referred to as major nuclei of Hofmann) protruding from the white matter in a necklace like fashion dorsal to the ventral roots. The major nuclei of Hofmann became more prominent at E12-E16, but substantial numbers of cells were still located within the ventrolateral white matter (referred to as minor nucleus of Hofmann). The distribution of immunoreactive neurons achieved by E16 was maintained during later developmental stages and was also characteristic of adult animals. After injection of Phaseolus vulgaris-leucoagglutinin unilaterally into the minor nucleus of Hofmann, labeled fibres were detected in the ventrolateral white matter ipsilateral to the injection site. Ascending and descending fibres were revealed throughout the entire rostro-caudal length of the lumbosacral spinal cord. Axon terminals were predominantly found within the lateral motor column and the ventral regions of lamina VII ipsilateral to the injection site. Several axon varicosities made close appositions with somata and dendrites of motoneurons, which were identified as synaptic contacts in a consecutive electron microscopic study. With the postembedding immunogold method, 21 of 97 labeled terminals investigated were immunoreactive for glycine and 2 of them showed immunoreactivity for gamma-aminobutyric acid (GABA). The axon trajectories of neurons within the minor nucleus of Hofmann suggest that some of these cells might represent a population of last-order premotor interneurons. J. Exp. Zool. 286:157-172, 2000.  相似文献   

9.
During development spinal networks generate recurring episodes of rhythmic bursting that can be recorded from motoneurons and interneurons. Optical imaging has identified a set of propriospinal interneurons that may be important in the production of this activity. These neurons are rhythmically active, are recurrently interconnected and have powerful projections to motoneurons. The excitability of this propriospinal network is depressed by activity and recovers in the interval between episodes. These and other observations have been formulated into a qualitative model in which population behavior and self-organization are responsible for the spontaneous activity generated by developing spinal networks.  相似文献   

10.
Network-driven spontaneous electrical activity in the chicken spinal cord regulates a variety of developmental processes including neuronal differentiation and formation of neuromuscular structures. In this study we have examined the effect of chronic inhibition of spinal cord activity on motoneuron survival and differentiation. Early spinal cord activity in chick embryos was blocked using an avian replication-competent retroviral vector RCASBP (B) carrying the inward rectifier potassium channel Kir2.1. Chicken embryos were infected with one of the following constructs: RCASBP(B), RCASBP(B)-Kir2.1, or RCASBP(B)-GFP. Infection of chicken embryos at E2 resulted in widespread expression of the viral protein marker p27 gag throughout the spinal cord. Electrophysiological recordings revealed the presence of functional Kir2.1 channels in RCASBP(B)-Kir2.1 but not in RCASBP(B)-infected embryos. Kir2.1 expression significantly reduced the generation of spontaneous motor movements in chicken embryos developing in ovo. Suppression of spontaneous electrical activity was not due to a reduction in the number of surviving motoneurons or the number of synapses in hindlimb muscle tissue. Disruption of the normal pattern of activity in chicken embryos resulted in a significant downregulation in the functional expression of large-conductance Ca(2+)-dependent K(+) channels. Reduction of spinal cord activity also generates a significant acceleration in the inactivation rate of A-type K(+) currents without any significant change in current density. Kir2.1 expression did not affect the expression of voltage-gated Na(+) channels or cell capacitance. These experiments demonstrate that chronic inhibition of chicken spinal cord activity causes a significant change in the electrical properties of developing motoneurons.  相似文献   

11.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

12.
The developmental potential of a uniform population of neural progenitors was tested by implanting them into chick embryos. These cells were generated from retinoic acid-treated mouse embryonic stem (ES) cells, and were used to replace a segment of the neural tube. At the time of implantation, the progenitors expressed markers defining them as Pax6-positive radial glial (RG) cells, which have recently been shown to generate most pyramidal neurons in the developing cerebral cortex. Six days after implantation, the progenitors generated large numbers of neurons in the spinal cord, and differentiated into interneurons and motoneurons at appropriate locations. They also colonized the host dorsal root ganglia (DRG) and differentiated into neurons, but, unlike stem cell-derived motoneurons, they failed to elongate axons out of the DRG. In addition, they neither expressed the DRG marker Brn3a nor the Trk neurotrophin receptors. Control experiments with untreated ES cells indicated that when colonizing the DRG, these cells did elongate axons and expressed Brn3a, as well as Trk receptors. Our results thus indicate that ES cell-derived progenitors with RG characteristics generate neurons in the spinal cord and the DRG. They are able to respond appropriately to local cues in the spinal cord, but not in the DRG, indicating that they are restricted in their developmental potential.  相似文献   

13.
The V0 interneuronal population is derived from Dbx1 expressing progenitors. Initial studies on these interneurons in the mouse spinal cord demonstrated that they project commissural axons and are involved in coordinating left‐right alternation during locomotion. Subsequent work has indicated that the V0 population can be divided into genetically distinct ventral (V0V) and dorsal (V0D) subpopulations, and experimental evidence suggests that each is responsible for left‐right alternation at different locomotor speeds. In this study, we perform a series of experiments to probe the location and connectivity of these subpopulations in neonatal mice and demonstrate that they are more diverse than previously predicted. While the distribution of either subpopulation remains consistent along the extent of the lumbar spinal cord, a cluster of V0D cells lateral to the central canal receive substantial input from primary afferents. Retrograde tracing and activity dependent labeling experiments demonstrate that a group of V0 interneurons located in this same region preferentially project axons towards contralateral motoneurons via an oligosynaptic pathway, and are active during fictive locomotion. Our results suggest that this subset of V0 interneurons may be primarily responsible for coordination of left‐right alternation during locomotion. Furthermore these experiments indicate that while genetic identity is one determinant of the function of a neuron during locomotion, the specific position in which the cell is located may also play a key role. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1189–1203, 2015  相似文献   

14.
Bhatt DH  McLean DL  Hale ME  Fetcho JR 《Neuron》2007,53(1):91-102
Animals can produce movements of widely varying speed and strength by changing the recruitment of motoneurons according to the well-known size principle. Much less is known about patterns of recruitment in the spinal interneurons that control motoneurons because of the difficulties of monitoring activity simultaneously in multiple interneurons of an identified class. Here we use electrophysiology in combination with in vivo calcium imaging of groups of identified excitatory spinal interneurons in larval zebrafish to explore how they are recruited during different forms of the escape response that fish use to avoid predators. Our evidence indicates that escape movements are graded largely by differences in the level of activity within an active pool of interneurons rather than by the recruitment of an inactive subset.  相似文献   

15.
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve–muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
17.
Spinal motoneurons from chick embryos were purified by retrograde transport and fluorescence-activated cell sorting. Growth conditions for motoneurons were studied, with experiments focused on the effects of conditioned media from chick myotubes, fibroblasts, and spinal cord dividing cells. Motoneurons rapidly extended neurites when plated onto polylysine-coated dishes that had been exposed to these conditioned media. Enzymatic analysis of the substratum-binding, neurite outgrowth-promoting activity from myotube-conditioned medium indicated that it contained heparan sulfate and protein. The neurite outgrowth-promoting activity sedimented as a peak centered at a density of 1.34 in associative cesium chloride gradients, and eluted near the void volume of a Sepharose CL-6B column. Inclusion of myotube conditioned medium in the culture medium of motoneurons also enhanced their survival over periods greater than 2 days in culture. This enhancement of survival could not be explained by myotube-conditioned medium providing motoneurons with a continuous supply of the neurite outgrowth-promoting activity. Media conditioned by spinal cord dividing cells and fibroblasts supported motoneuron survival to some extent, but this effect was not as great as that of myotube-conditioned medium.  相似文献   

18.
Regional differences in the number of motoneurons in the spinal cord of the chick are thought to arise developmentally by region-specific cell death and cell migration. In this way, a numerically homogeneous motor column throughout the spinal cord is believed to be molded into the adult pattern. Region-specific differences in proliferation are not thought to play a significant role in this process. By counting motoneurons in serial sections throughout the rostral-caudal extent of the spinal cord on Embryonic Day 4 in the chick, we have found that the numerical variations in motoneurons in different spinal cord regions are already foreshadowed by this stage, which is before the onset of both cell death and the secondary migration of neurons out of the motor column. These results indicate that although nonproliferative events may contribute to the later regional variations in motoneuron numbers, the initial differences themselves are created early on by regionally specific proliferative events.  相似文献   

19.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve injury-induced neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号