首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The presence of a specific binding site for a hepta-beta-glucoside elicitor of phytoalexin accumulation has been demonstrated in soybean microsomal membranes. A tyramine conjugate of the elicitor-active hepta-beta-glucoside was prepared and radiolabeled with 125I. The labeled hepta-beta-glucoside-tyramine conjugate was used as a ligand in binding assays with a total membrane fraction prepared from soybean roots. Binding of the radiolabeled hepta-beta-glucoside elicitor was saturable, reversible, and with an affinity (apparent Kd = 7.5 x 10(-10) M) comparable with the concentration of hepta-beta-glucoside required for biological activity. A single class of hepta-beta-glucoside binding sites was found. The binding site was inactivated by proteolysis and by heat treatment, suggesting that the binding site is a protein or glycoprotein. Competitive inhibition of binding of the radiolabeled hepta-beta-glucoside elicitor by a number of structurally related oligoglucosides demonstrated a direct correlation between the binding affinities and the elicitor activities of these oligoglucosides. Thus, the hepta-beta-glucoside-binding protein fulfills criteria expected of a bona fide receptor for the elicitor-active oligosaccharin.  相似文献   

2.
Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of [3H]forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited [3H]forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP gamma S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP gamma S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.  相似文献   

3.
J J Cheong  R Alba  F Ct  J Enkerli    M G Hahn 《Plant physiology》1993,103(4):1173-1182
Total membranes prepared from roots of soybean (Glycine max L.) seedlings have previously been shown to contain proteinaceous binding site(s) for a hepta-beta-glucoside elicitor of phytoalexin accumulation. The hepta-beta-glucoside elicitor-binding proteins have now been shown to co-migrate with a plasma membrane marker enzyme (vanadate-sensitive H(+)-ATPase) on linear sucrose density gradients. With the use of detergents, the elicitor-binding proteins have been solubilized in functional form from soybean root membranes. The nonionic detergents n-dodecylsucrose, n-dodecylmaltoside, and Triton X-114, at concentrations of 5 to 10 mg/mL, each solubilizes between 50 and 60% of the elicitor-binding activity in a single extraction of the membranes. A zwitterionic detergent, N-dodecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate (ZW 3-12), also solubilizes about 40% of the total binding activity at detergent concentrations between 1 and 2 mg/mL, but the total binding activity recovered is only approximately 50% of that recovered with the nonionic detergents. The elicitor-binding proteins solubilized with either n-dodecylsucrose or ZW 3-12 retain the high affinity for radiolabeled hepta-beta-glucoside elicitor (apparent dissociation constant [Kd] = 1.8 nM and 1.4 nM, respectively) that was observed with the membrane-localized binding proteins (apparent Kd = 1 nM). Competitive ligand-binding experiments with several structurally related synthetic oligoglucosides demonstrate that the solubilized binding proteins retain specificity for elicitor-active oligosaccharides, irrespective of the detergent used for solubilization. Moreover, the binding affinities of the oligoglucosides for the solubilized binding proteins correlate well with their abilities to induce phytoalexin accumulation in soybean cotyledon tissue. Gel-permeation chromatography of n-dodecylsucrose-solubilized elicitor-binding proteins demonstrate that the bulk of the elicitor-binding activity is associated with large detergent-protein micelles (relative molecular weight > 400,000). Our results suggest that n-dodecylsucrose is a suitable detergent for solubilizing elicitor-binding proteins from soybean root membranes with minimal losses of binding activity. More importantly, we demonstrate that solubilization does not significantly after the binding properties of the proteins for elicitor-active oligoglucosides.  相似文献   

4.
The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.  相似文献   

5.
A Mith?fer  J Ebel 《FEBS letters》1999,458(2):129-132
In temperature-induced Triton X-114 phase separation experiments the beta-glucan elicitor-binding site from soybean (Glycine max L.) root membranes was identified as (a) hydrophobic membrane protein(s). The Zwittergent 3-12-solubilized beta-glucan-binding proteins were incorporated into lipid vesicles by the detergent-dilution procedure. Reconstituted binding proteins were functional in that binding of the hepta-beta-glucoside ligand was saturable, reversible and of high affinity (K(d)=6-7 nM). Competition studies using beta-glucans with different degrees of polymerization (DP 7-15; DP 15-25) showed effective displacement of the radioligand from the binding site whereas beta-glucan fragments with DP <7 were ineffective. The total amount of reconstituted binding activity was dependent on the acyl chain length of the phospholipids used for the reconstitution with a preference for decanoic (C10) and dodecanoic (C12) chains. Restored ligand binding was maximally 37% as compared to the former detergent-solubilized binding activity. The presence of a lipid environment stabilized the purified beta-glucan-binding proteins.  相似文献   

6.
Beef liver membranes were shown to have different kinds of 3,5,3'-triiodo-L-thyronine binding proteins including the 55-kDa protein which had been reported to have this activity in many cells by affinity labelling with N-bromoacetyl-3,5,3'-[125I]triiodo-L-thyronine. In order to characterize the molecular features of these binding proteins, the 55-kDa protein was purified from a beef liver membrane fraction abundant in the plasma membrane. The protein was solubilized with 0.5% Chaps and purified by chromatography on gel filtration, hydroxyapatite, and Mono Q anion-exchange columns. The purity was confirmed with reversed-phase HPLC and SDS/PAGE. Consequently, 0.4% of the total proteins in the membrane fraction was recovered as the 55-kDa protein. One fourth of the amino acid composition of this protein was Glx (14.6%) plus Asx (11.7%) and the pI of this protein was 4.5. The purified protein has triiodothyronine-binding activity with a Kd of 57 nM which is similar to the high-affinity binding site of the membranes. The anti-(55-kDa protein) sera specifically recognized the 55-kDa protein of beef, rat and human cells. The immunoglobulin G fraction of the anti-(55-kDa protein) sera inhibited triiodothyronine binding to the beef liver membrane fraction. The purified protein also showed the activity of protein disulfide-isomerase (EC 5.3.4.1) as determined by reactivating scrambled ribonuclease. These data strongly suggested that the multi-functional 55-kDa protein which has triiodothyronine-binding activity and the activity of protein disulfide-isomerase, which is also reported to be the beta subunit of prolyl-4-hydroxylase, glycosylation-site-binding protein of oligosaccharyl transferase and iodothyronine 5'-monodeionidase, could be significant in the action of triiodothyronine towards the target cells.  相似文献   

7.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors.  相似文献   

8.
R T Lee  Y C Lee 《Biochemistry》1987,26(20):6320-6329
The galactose/N-acetylgalactosamine-specific receptor (also known as asialoglycoprotein receptor) of rat hepatocytes consists of three subunits, one of which [43 kilodalton (kDa)] exists in a greater abundance (up to 70% of total protein) over the two minor species (52 and 60 kDa). When the receptor on the hepatocyte membranes was photoaffinity labeled with an 125I-labeled high-affinity reagent [a triantennary glycopeptide containing an aryl azide group on galactosyl residues; Lee, R. T., & Lee, Y. C. (1986) Biochemistry 25, 6835-6841], the labeling occurred mainly (51-80%) on one of the minor bands (52 kDa). Similarly, affinity-bound, N-acetylgalactosamine-modified lactoperoxidase radioiodinated the same 52-kDa band preferentially. In contrast, both the photoaffinity labeling and lactoperoxidase-catalyzed iodination of the purified, detergent-solubilized receptor resulted in a distribution of the label that is comparable to the Coomassie blue staining pattern of the three bands; i.e., the 43-kDa band was the major band labeled. These and other experimental results suggest that the preferential labeling of the minor band and inefficient labeling of the major band on the hepatocyte membrane resulted from a specific topological arrangement of these subunits on the membranes. We postulate that in the native, membrane-bound state of the receptor, the 52-kDa minor band is topologically prominent, while the major (43 kDa) band is partially masked. This partial masking may result from a tight packing of the receptor subunits on the membranes to form a lattice work [Hardy, M. R., Townsend, R. R., Parkhurst, S. M., & Lee, Y. C. (1985) Biochemistry 24, 22-28].  相似文献   

9.
Autophosphorylation of a DNA-activated protein kinase (DNA-PK) in Raji Burkitt's lymphoma cells generated a band that corresponded to a phosphoprotein of about 300 kDa on SDS/PAGE. This band corresponds to a 300-350-kDa DNA-PK found previously in HeLa cells. In addition to the 300-kDa phosphoprotein, the band of a highly phosphorylated 58-kDa protein was detected by SDS/PAGE of partially purified DNA-PK preparations after the phosphorylation reaction in the presence of double-stranded DNA. This phosphoprotein was specifically immunoprecipitated by phosphoprotein nor detectable activities of other kinases, phosphorylated recombinant c-Myc proteins in the presence of DNA. The c-Myc phosphorylation by DNA-PK was markedly stimulated by relaxed, double-stranded DNA, but neither by single-stranded DNA nor by RNA. Phosphopeptide mapping and phosphoamino acid analysis indicated that DNA-PK phosphorylates c-Myc in vitro at several serine residues.  相似文献   

10.
Synthetic rat atrial natriuretic factor (ANF) was derivatized with the N-hydroxysuccinimide ester of [125I]iodoazidosalicylic acid to yield a radioactive photoaffinity probe. Incubation of purified plasma membranes from rat kidney cortex with this photoaffinity probe resulted in the specific labeling of a 140-kDa glycoprotein. The photoaffinity labeling of this protein was inhibited by ANF but not by reduced and alkylated ANF nor by other unrelated peptides. A 140-kDa band was also specifically labeled in liver plasma membranes but not in adipocyte plasma membranes. These observations suggest strongly that the 140-kDa glycoprotein is the ANF receptor.  相似文献   

11.
The glucose transporter has been identified in a variety of mammalian cell membranes using a photoactivatable carrier-free radioiodinated derivative of forskolin, 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n ([125I]IAPS-forskolin) at 1-3 nM. The membranes that were photolabelled with [125I]IAPS-forskolin were human placental membranes, rat cortical and cerebellar synaptic membranes, rat cardiac sarcolemmal membranes, rat adipocyte plasma membranes, smooth-muscle membranes, and S49 wild-type (WT) lymphoma-cell membranes. The glucose transporter in plasma membranes prepared from the insulin-responsive rat cardiac sarcolemmal cells, rat adipocytes and smooth-muscle cells were determined to be approx. 45 kDa by SDS/polyacrylamide-gel electrophoresis (PAGE). Photolysis of human placental membranes, rat cortical and cerebellar synaptic membranes, and WT lymphoma membranes with [125I]-IAPS-forskolin, followed by SDS/PAGE, indicated specific derivatization of a broad band (43-55 kDa) in placental membranes and a narrower band (approx. 45 kDa) in synaptic membranes and WT lymphoma membranes. Digestion of the [125I]IAPS-forskolin-labelled placental and WT lymphoma membranes with endo-beta-galactosidase showed a reduction in the apparent molecular mass of the radiolabelled band to approx. 40 kDa. The membranes that were photolabelled with [125I]IAPS-forskolin and trypsin-treated produced a radiolabelled proteolytic fragment with an apparent molecular mass of 18 kDa. [125I]IAPS-forskolin is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues.  相似文献   

12.
Glycoprotein elicitor can induce plant resistance and become a potential agent for biological control of plant diseases. Here, a new glycoprotein elicitor was purified with the method of cold alcohol precipitation and anion exchange chromatography from the mycelium of Alternaria tenuissima strain JH505, which was identified on the basis of morphological features and sequence analysis of rDNA internal transcribed spacer. The protein showed a single band on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) stained with silver and appeared one main protein peak in HPLC. The apparent molecular weight of the purified protein was 66 kDa and isoelectric point was about 4.27. This protein was identified as glycoprotein by glycoprotein staining Kit. Anthrone-colorimetric assay and Coomassie blue G-250 staining showed that carbohydrate and protein content was in a ratio of 1.75. After deglycosylation by trifluoromethane-sulfonic acid, this glycoprotein showed two bands on the SDS–PAGE, and which means the glycoprotein may have at least two glycosylation sites. The glycoprotein induced tobacco resistance against tobacco mosaic virus and enhanced wheat seedling growth at 15°C. The glycoprotein elicitor provided an effective way of alternative strategies for plant disease control.  相似文献   

13.
We have isolated high affinity inositol (1,3,4,5)-tetrakisphosphate (IP4)- and inositol hexakisphosphate (IP6)-binding proteins from detergent-solubilized rat brain membranes using a P1-tethered IP4 derivative linked to an Affi-Gel support. To determine the identity, binding characteristics, and distribution of the individual IP4 recognition sites, we have synthesized an IP4 photoaffinity label probe, 125I-(D,L)-1-O-[N-(4-azidosalicyloxy)-3-aminopropyl-1-phospho]- IP4 (125I-ASA-IP4). Two apparently distinct IP4-binding proteins (IP4BP), isolated with the IP4 affinity column, display high affinity and selectivity for IP4 over inositol trisphosphate (IP3), inositol pentakisphosphate (IP5), and IP6. The first IP4-binding protein (IP4BP1) which has a KD for IP4 of 4 nM, is comprised of a protein at 182 kDa which is specifically photolabeled with high affinity by 125I-ASA-IP4. The second, IP4BP2, has an affinity for IP4 of 1.5 nM and contains proteins at 84 and 174 kDa, both of which are specifically photoaffinity labeled. A putative IP6-binding protein (IP6BP), also isolated with the IP4 affinity column, binds IP6 with a KD of 14 nM and comprises three proteins of 115, 105, and 50 kDa. The 115- and 105-kDa subunits, but not the 50-kDa subunit, specifically incorporate the photolabel. The IP4BP (182, 174, and 84 kDa) and IP6BP (115 and 105 kDa) proteins are specifically photolabeled in the crude membrane, partially purified, and purified fractions. These receptor-binding proteins vary in inositol phosphate specificity and in the effects of pH, Ca2+, and heparin on IP4 photoaffinity labeling. In addition, IP4BP and IP6BP are enriched in the brain but differ in their regional localizations within the brain.  相似文献   

14.
Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an approximately 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger Mr protein in synaptic membranes. Protease activity during protein purification was prevented by introducing five protease inhibitors, and a three-step purification procedure was developed that yielded a high degree of purification of glutamate-binding proteins. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 microM, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L-[3H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes.  相似文献   

15.
The endocytic hyaluronan (HA) receptor of liver sinusoidal endothelial cells (LECs) is responsible for the clearance of HA and other glycosaminoglycans from the circulation in mammals. We report here for the first time the purification of this liver HA receptor. Using lectin and immuno-affinity chromatography, two HA receptor species were purified from detergent-solubilized membranes prepared from purified rat LECs. In nonreducing SDS-polyacrylamide gel electrophoresis (PAGE), these two proteins migrated at 175- and approximately 300 kDa corresponding to the two species previously identified by photoaffinity labeling of live cells as the HA receptor (Yannariello-Brown, J., Frost, S. J., and Weigel, P. H. (1992) J. Biol. Chem. 267, 20451-20456). These two proteins co-purify in a molar ratio of 2:1 (175:300), and both proteins are active, able to bind HA after SDS-PAGE, electrotransfer, and renaturation. After reduction, the 175-kDa protein migrates as a approximately 185-kDa protein and is not able to bind HA. The 300-kDa HA receptor is a complex of three disulfide-bonded subunits that migrate in reducing SDS-PAGE at approximately 260, 230, and 97 kDa. These proteins designated, respectively, the alpha, beta, and gamma subunits are present in a molar ratio of 1:1:1 and are also unable to bind HA when reduced. The 175-kDa protein and all three subunits of the 300-kDa species contain N-linked oligosaccharides, as indicated by increased migration in SDS-PAGE after treatment with N-glycosidase F. Both of the deglycosylated, nonreduced HA receptor proteins still bind HA.  相似文献   

16.
A new calmodulin (CaM) binding protein, designated P-57, has been purified to apparent homogeneity from bovine cerebral cortex membranes. In contrast to other calmodulin binding proteins, P-57 has higher affinity for calmodulin in the absence of bound Ca2+ than in its presence. The protein was purified by DEAE-Sephacel chromatography and two CaM-Sepharose affinity column steps. The first CaM-Sepharose column was run in the presence of Ca2+; the second was run in the presence of chelator in excess of Ca2+. P-57 was adsorbed by CaM-Sepharose only in the absence of bound Ca2+ and was eluted from the second column by buffers containing Ca2+. Sodium dodecyl sulfate (SDS)-polyacrylamide gels of the purified protein showed only one band at Mr 57 000. The major form of the protein on Bio-Gel A-1.5m and native polyacrylamide gradient gel electrophoresis ran with an apparent Stokes radius of 41 A. Photoaffinity labeling of P-57 with azido[125I]calmodulin yielded one cross-linked product on SDS gels with an Mr of 70 000. This interaction occurred only when excess ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid was present and was inhibited by the presence of Ca2+ in excess of chelator. It appears that P-57 has novel binding properties for calmodulin distinct from all other calmodulin binding proteins described thus far.  相似文献   

17.
Purification of a vasodilator-regulated phosphoprotein from human platelets   总被引:17,自引:0,他引:17  
Cyclic-nucleotide-elevating vasodilators such as prostaglandin E1, prostacyclin, sodium nitroprusside and endothelium-derived relaxing factor inhibit both contraction of vascular smooth muscle cells and the aggregation of platelets at an early step of the activation cascade. Previous studies from this laboratory [Waldmann, R., Nieberding, M. and Walter, U. (1987) Eur. J. Biochem. 167, 441-448) established that in human platelets cyclic-nucleotide-elevating vasodilators stimulated a pattern of protein phosphorylation which was mediated by both cAMP- and cGMP-dependent protein kinases. Of particular interest was a membrane-bound 50-kDa protein whose phosphorylation was increased both by cAMP- and cGMP-elevating vasodilators in intact platelets and by endogenous cAMP- and cGMP-dependent protein kinase in platelet membranes. Since the molecular mechanism of action of cyclic-nucleotide-elevating vasodilators is unknown, this 50-kDa phosphoprotein from human platelets was purified to apparent homogeneity by salt extraction, anion, cation and dye-ligand chromatography. The purified protein migrated as a 46-kDa protein in SDS/PAGE, was an excellent substrate for both cAMP- and cGMP-dependent protein kinases and migrated in SDS/PAGE as a 50-kDa protein after phosphorylation by these protein kinases. Analysis by limited proteolysis, tryptic fingerprinting and of phosphoamino acids established that the purified protein is identical with the 50-kDa protein phosphorylated by both cAMP- and cGMP-dependent protein kinases in platelet membranes and in response to cAMP- and cGMP-elevating vasodilators with intact platelets. Evidence is presented that the purified protein contains at least two phosphorylation sites, each of which is preferentially phosphorylated by either cAMP- or cGMP-dependent protein kinase. The availability of this vasodilator-regulated phosphoprotein as a purified protein should now allow new approaches for investigating the function of this protein and its possible role in the mechanism of action of cyclic-nucleotide-elevating vasodilators.  相似文献   

18.
Chick cardiac membranes were affinity labelled by cross-linking to membrane-bound 125I-endothelin-1 with disuccinimidyl tartarate. SDS/PAGE and autoradiographic analysis of the 125I-endothelin-1-labelled material in the presence or absence of 2-mercaptoethanol revealed one major labelled band, corresponding to a molecular mass of 53 kDa, whose appearance was dose-dependently inhibited by the addition of unlabelled endothelin-1 (1-100 nM). Subtracting the molecular mass of 125I-endothelin-1 and disuccinimidyl tartarate, the binding protein appeared to have a molecular mass of 50 kDa. To investigate further the molecular properties of endothelin receptor, the 125I-endothelin-1-endothelin-receptor complex was solubilized from chick cardiac membranes using the detergent digitonin. Sucrose gradient sedimentation of the solubilized complex indicated a sedimentation coefficient of 13 S, whereas the complex of (+)-[3H]PN200-110, a dihydropyridine derivative, and dihydropyridine-sensitive Ca2+ channels sedimented at 22 S. A monoclonal antibody raised against dihydropyridine-sensitive Ca2+ channels from the chick brain did not immunoprecipitate the 125I-endothelin-1-endothelin-receptor complex. These data suggest that endothelin receptor is clearly distinct from dihydropyridine-sensitive Ca2+ channels and endothelin has its own specific 50-kDa receptor.  相似文献   

19.
Topography of human placental receptors for epidermal growth factor   总被引:1,自引:0,他引:1  
These studies were undertaken to determine whether term human placental microvillus plasma membranes, which are exposed to maternal blood, and basolateral plasma membranes, which are in close proximity to fetal blood capillaries, contain receptors for epidermal growth factor (EGF). These two highly purified membranes bound 125I-EGF with similar affinity (apparent dissociation constants, 0.07-0.12 nM, but the total number of available receptors was greater in microvillus (8.2 pmol/mg protein) compared to basolateral (4.9 pmol/mg protein) plasma membranes. Detailed characterization of 125I-EGF binding to these membranes revealed numerous similarities as well as differences. The two membranes contained two major (155 and 140 kDa) and at least three minor (115, 175, and 210 kDa) specific 125I-EGF binding proteins. The 115-kDa protein was only found in basolateral plasma membranes. The 155-kDa protein was predominantly labeled in microvillus, whereas the 140-kDa protein was labeled predominantly in basolateral plasma membranes. The addition of protease inhibitors did not alter the multiple 125I-EGF binding proteins pattern found in these membranes. EGF stimulated phosphorylation of 140- and 155-kDa proteins in both microvillus and basolateral plasma membranes. However, the 155-kDa protein was phosphorylated to a greater extent in microvillus, whereas both 140- and 155-kDa proteins were phosphorylated equally in basolateral plasma membranes. Light and electron microscope autoradiographic studies revealed that 125I-EGF preferentially associated with microvillus plasma membranes. The data demonstrates the presence of EGF receptors in outer cell membranes of syncytiotrophoblasts and suggests that maternal EGF may influence syncytiotrophoblast function by binding to receptors in microvillus plasma membranes, while fetal EGF may also influence syncytiotrophoblast function but via receptors in basolateral plasma membranes.  相似文献   

20.
Plant cells in culture secrete a sulfated peptide named phytosulfokine-alpha (PSK-alpha), and this peptide induces the cell division and/or cell differentiation by means of specific high and low affinity receptors. Putative receptor proteins for this autocrine type growth factor were identified by photoaffinity labeling of plasma membrane fractions derived from rice suspension cells. Incubation of membranes with a photoactivable (125)I-labeled PSK-alpha analog, [N(epsilon)-(4-azidosalicyl)Lys(5)]PSK-alpha (AS-PSK-alpha), followed by UV irradiation resulted in specific labeling of 120- and 160-kDa bands in SDS-polyacrylamide gel electrophoresis. The labeling of both bands was completely inhibited by unlabeled PSK-alpha and partially decreased by PSK-alpha analogs possessing moderate binding activities. In contrast, PSK-alpha analogs that have no biological activity showed no competition for (125)I-AS-PSK-alpha binding, confirming the specificity of binding proteins. Analysis of the affinity of (125)I incorporation into the protein by ligand saturation experiments gave apparent K(d) values of 5.0 nm for the 120-kDa band and 5.4 nm for the 160-kDa band, suggesting that both proteins correspond to the high affinity binding site. Treatment of (125)I-AS-PSK-alpha cross-linked proteins with peptide N-glycosidase F demonstrated that both proteins contained approximately 10 kDa of N-linked oligosaccharides. Specific cross-linking of (125)I-AS-PSK-alpha was also observed by using plasma membranes derived from carrot and tobacco cells, indicating the widespread occurrence of the binding proteins. Together, these data suggest that the 120- and 160-kDa proteins are PSK-alpha receptors that mediate the biological activities of PSK-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号