首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl–tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl–tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl–tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl–tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

2.
Abstract— Of seven amino acids studied, glutamic acid and phenylalanine were incorporated in highest amounts into the hot-TCA-insoluble material of the 100,000 g supernatant fraction of rat brain homogenate. The system for incorporation of phenylalanine was RNase-insensitive and required ATP (apparent Km = 0.64 m m ), KC1 (apparent Km = 14 m m ) and MgCl2 (optimal concentration range 4-15 m m ). The apparent Km for phenylalanine was 2.9 m m . [14C]Phenylalanine did not undergo modification before incorporation. Tyrosine and phenylalanine inhibited the incorporation, respectively, of [14C]phenylalanine and [14C]tyrosine when incubated simultaneously or successively. The Km and Kt (3.3 m m ) values for phenylalanine in the incorporation reaction and as inhibitor of the incorporation of [14C]tyrosine were similar. We suggest that both the enzyme and the acceptor for the incorporation of these two amino acids are the same. [14C]Phenylalanine and [14C]tyrosine entered into COOH-terminal positions in the reactions described. Brain exhibited a 25- to 100-fold higher capacity to incorporate phenylalanine than that of liver, kidney or thyroid. The acceptor capacity in rat brain rapidly decreased from day 5 to day 15 of postnatal age and then slowly until age 150 days.  相似文献   

3.
Hyperphenylalaninemia was induced in 7-day-old rabbits over a 6-hr period by intraperitoneal injection of phenylalanine. l -[U-14C]Lysine was injected intraperitoneally into these rabbits and into a control group. The rate of incorporation of l -[U-14C]lysme into brain ribosomal protein was decreased during a 5-hr period in the presence of elevated plasma phenylalanine concentrations. Lysine transport from the peritoneum to the plasma was unaffected by the high plasma phenylalanine concentrations.  相似文献   

4.
—1. Effects of the administration of phenylalanine to rats on incorporation in vivo or in vitro of [U-14C]glucose into cerebral lipids were studied during the first 5–10 days of postnatal development. In addition, the effects of added phenylalanine and its deaminated metabolites on incorporation of [U-14C]glucose by homogenates into lipids of developing rat brain were investigated. Hyperphenylalaninaemia reduced incorporation both in vivo and in vitro of [U-14C]glucose into cerebral lipids. 2. Phenylalanine or tyrosine added in vitro at concentrations equivalent to those in the brain of the hyperphenylalaninaemic rat (0-1 μmole/ml incubation medium) did not inhibit incorporation of [U-14C)glucose into lipids, although at much higher concentrations of phenylalanine (36 μumoles/ml incubation medium) slight inhibition (10 per cent) of incorporation of [U-14C]glucose into lipids was observed. 3. In contrast, the deaminated metabolites in general exerted greater inhibitory effects at lower concentrations. Phenyllactic acid, in comparison to phenylpyruvic and phenyl-acetic acid, was the most potent inhibitor of the incorporation in vitro of [U-14C]glucose into cerebral lipids. These results indicated that these metabolites of phenylalanine were the more potent inhibitors of cerebral lipid metabolism in immature animals.  相似文献   

5.
Abstract— A 100,000 g supernatant fraction from rat brain that was passed through a column of Sephadex G-25-40 was able, after addition of some factors, to incorporate [I4C]arginine (apparent Km= 5 μM) and [14C]tyrosine (apparent Km= 20 μM) into its own proteins. The factors required for the incorporation of [14C]arginine were: ATP (optimal concentration = 0-25-2 μM) and Mg2+ (optimal concentration 5 mM). For the incorporation of [I4C]tyrosine the required factors were: ATP (apparent Km= 0-75 μM), Mg2+ (optimalconcentration 8-16 mM) and K+ (apparent Km= 16 mM). Addition of 19 amino acids did not enhance these incorporations. Optimal pHs were: for [14C]arginine and [14C]tyrosine, respectively, 7-4 and 7-0 in phosphate buffer and 7–9 and 7-3-8-1 in tris-HCl buffer. Pancreatic ribonuclease abolished the incorporation of [14C]arginine but had practically no effect in the incorporation of [14C]tyrosine. Furthermore, [14C]arginyl-tRNA was a more effective donor of arginyl groups than [14C]arginine, whereas [14C]tyrosyl-tRNA was considerably less effective than [14C]tyrosine. The incorporations of [14C]arginine and [14C]tyrosine into brain proteins were from 25- to 2000-fold higher than for any other amino acid tested (12 in total). In brain [14C]arginine incorporation was higher than in liver and thyroid but somewhat lower than in kidney. In comparison to brain, the incorporation of [14C]tyrosine was negligible in liver, thyroid or kidney. Kinetic studies showed that the macromolecular factor in the brain preparation was complex. The protein nature of the products was inferred from their insolubilities in hot TCA and from the action of pronase that rendered them soluble. [14C]Arginine was bound so that its a-amino group remained free. Maximal incorporation of [14C]tyrosine in brain of 30-day-old rats was about one-third of that in the 5-day-old rat. The changes with postnatal age in the incorporation of [14C]arginine were not statistically significant.  相似文献   

6.
—Choline acetyltransferase has been purified from three invertebrate species, namely snail (Helix aspersa), cockroach (Periplaneta americana) and horse shoe crab (Limulus polyphemus.) All three enzymes followed a Theorell-Chance enzyme mechanism with a sequential addition of the substrates. All three enzymes were activated by sodium and potassium chloride and inhibited by high concentrations of magnesium or calcium chloride. The apparent Km for choline and acetyl-CoA was for snail: Kmch= 370 μm ,KmAcetyl-CoA= 51μm ; cockroach:KmCh= 550 μm , KmAcely-CoA= 16 μm horse shoe crab:KmCn= 2700 μm KmAcctyl-coA= 68 μm CoA inhibited the enzymes competitively with respect to acetyl-CoA and non-competitively with respect to choline. Acetylcholine inhibited the enzymes competitively with respect to choline and non-competitively with respect to acetyl-CoA. All the enzymes were inhibited strongly by 5,5′-dithiobis (2-nitrobenzoate), iodoacetate, acryloylcholine, chloracetylcholine and 3-bromacetonyltrimethyl-ammonium. The enzymes were only weakly inhibited by the styrylpyridine derivatives. The isoelectric points were 5.3 and 5.0 for the horse shoe crab and cockroach enzymes respectively. All three enzymes showed low affinity for a cation-exchanger (CM-Sephadex).  相似文献   

7.
Abstract— Slices of rabbit spinal cord were incubated with [3H]tyrosine and [35SO4] in the presence of either 5% antiserum to myelin basic protein or 0.21 mM-puromycin. The degree of incorporation of the precursors into the basic protein (BP), the proteolipid protein (PLP) and into sulphatides, as a representative lipid, in isolated myelin was investigated. Anti-BP serum inhibited the incorporation of [3H]tyrosine into BP and PLP from 22 to 46% as compared to controls, whereas puromycin nearly completely inhibited incorporation. The incorporation of [35SO4] into sulphatides was inhibited by anti-BP serum from 20 to 34% and by puromycin from 33 to 65% as compared to controls. These alterations were myelin-specific as shown by the equal or even increased incorporation of the precursors into the homogenates of spinal cord. The results are discussed in relation to the interaction of lipids and proteins in membrane assembly.  相似文献   

8.
—An attempt was made to isolate the saturable uptake from the unidirectional influx of amino acids into tissue slices and to estimate the transport constants and maximal velocities of saturable transport. The method was applied to studies on the inhibition of phenylalanine in the saturable influx of tyrosine, tryptophan, histidine and leucine into brain cortex slices from adult and 7-day-old rats. In both age groups phenylalanine inhibited the influx of the other amino acids, and vice versa. The apparent transport constants of the other amino acids increased in the presence of phenylalanine more noticeably in the slices from 7-day-old rats than in those from adult rats, whereas the concomitant influx of phenylalanine was inhibited less in the slices from 7-day-old rats. In immature animals in vivo competition between amino acids may play a more marked role in the supply of amino acids from plasma to brain, as the transport systems in brain slices from 7-day-old rats become saturated with extracellular amino acids more readily than do the transport systems in brain slices from adult rats.  相似文献   

9.
Summary Incorporation of 14C-phenylalanine by T. neapolitanus was inhibited competitively by relatively low concentrations of glycine, serine, alanine, valine, leucine, isoleucine, tryptophan, tyrosine, histidine, threonine, and methionine (Group I amino acids), but not greatly depressed by aspartate, glutamate, lysine, arginine, cysteine (Group II amino acids) and proline at similar concentrations. Group I acids competed with each other for incorporation but were little affected by Group II acids. Similarly Group I acids little depressed the incorporation of Group II acids, among which, however, some mutual inhibition occurred. Incorporation of proline was depressed by both Group I and II acids. Two main permeation mechanisms are proposed, one transporting Group I acids, the other Group II acids, but some overlapping of function probably occurs. Proline may be transported by a third permease, which is subject to inhibition by both Group I and II acids. T. concretivorus also has a common transport mechanism for some amino acids. Less interaction between amino acids was found using two heterotrophic pseudomonads.Exogenous phenylalanine inhibited both the biosynthesis and the uptake of tyrosine and tryptophan by T. neapolitanus. High phenylalanine concentrations depressed the assimilation of 14C-labelled tyrosine and tryptophan less than low ones, suggesting that the bacteria developed a requirement for external tyrosine and tryptophan when exposed to highly inhibitory concentrations of phenylalanine.  相似文献   

10.
The quantitative content of three transport systems for aromatic amino acids in cells of Halobacterium salinarium was measured: the common system (K m is about 10-6 M) and two tyrosine-specific systems with high and low affinity (K m is about 10-8 and 10-5 M, respectively). To determine the activity of each of three systems separately, a method was developed based on the selective phenylalanine effect on these activities. When phenylalanine exeeds [14C]tyrosine by four to sixforld, it inhibits competitively the activity of the common system, and its 50- to 100-fold molar excess is inhibitory in a non-competitive way for the specific high affinity system (HAT system). The specific low affinity system (LAT system) is practically insensitive to phenylalanine. The activities of tyrosine-specific transport systems are slightly dependent on the culture age, and the observed decrease in transport activity during growth is due mainly to the decreased content of the common system. The HAT system formation is regulated by the repression type, and the effectors are aromatic amino acids especially tyrosine itself. The physiological sense of the tyrosine transport system's multiplicity in H. salinarium is discussed.  相似文献   

11.
The growth of a mFP-resistant Brevibacterium flavum mutant, No. 221-43, having PDTR was synergistically and completely inhibited by mFP plus Tyr-Glu, but not by mFP plus tyrosine or pFP plus Tyr-Glu, whereas that of a mutant having was only partially inhibited by mFP plus Tyr-Glu. Tyr-Glu could replace tyrosine required for the growth of a tyrosine auxotroph. The phenylalanine uptake was competitively inhibited by tyrosine and the tyrosine uptake by phenylalanine. The phenylalanine uptake was also inhibited by mFP, but not by Tyr-Glu. Mutants having both PDTR and DSR derived from strain No. 221-43 were effectively selected by the resistance to mFP plus Tyr-Glu, and produced much larger amounts of phenylalanine, with small amounts of tyrosine, than the parent. By the same method, mutants having DSR and PDTR, which produced 23.4 g/l of phenylalanine at maximum, were obtained from a pFP-resistant tyrosine auxotroph having PDTR which produced 18 g/l. Similar mutants were also obtained from a tryptophan-producing strain, but produced smaller amounts of tryptophan than the parent, whereas the total amounts of tryptophan and phenylalanine produced were increased.  相似文献   

12.
The incorporation of [3H]phenylalanine, [3H]tyrosine, and [3H]tryptophan into protein and amino acyl-tRNA was studied in cell-free preparations from rat brain. Tyrosine and tryptophan inhibited the incorporation of phenylalanine into protein, and tyrosine inhibited the incorporation of phenylalanine and tryptophan into amino acyl-tRNAs. In most cases, homogentisate, phenylpyruvate, and phenyllactate inhibited the incorporation of phenylalanine, tyrosine, and tryptophan into protein and amino acyl-tRNAs, and the incorporation of phenylalanine into polyphenylalanine. All other protein amino acids, and phenylacetate, salicylate, and benzoate were wholly ineffectual. The results suggest that the formation of amino acyl-tRNAs may have been the step which was affected most by the inhibitors. The incorporation data at different concentrations of the aromatic amino acids were fitted to the simple Michaelis equation. Homogentisate and phenylpyruvate generally tended to reduce both Km and V in the incorporation of aromatic amino acids into protein and amino acyl-tRNAs, even if V decreased more than Km.  相似文献   

13.
Amino acid transport was studied in three neuroblastoma clones, N-TD6, which synthesizes norepinephrine, N-T16, which synthesizes small amounts of serotonin, and N-S20Y, which synthesizes acetylcholine. All three clones exhibited high-affinity saturable transport systems for tyrosine, phenylalanine, tryptophan and glycine as well as systems unsaturated at amino acid concentrations of 1 mM in the external medium. Tyrosine, phenylalanine and tryptophan enter all three clones by rapidly exchanging transport systems which appear to be relatively insensitive to lowered external [Na+] or to the presence of 2,4-dinitrophenol (DNP). Glycine uptake was slower and was much more sensitive to lowered external [Na+] and to the presence of DNP in the medium. Glycine transport in N-T16 cells was decreased more markedly at low temperature than was transport of the three aromatic amino acids. Km and Vmax values found for saturable transport of tyrosine, phenylalanine and tryptophan were sufficiently low to suggest that, if similar amino acid transport systems exist in neuronal membranes, and if amino acid levels in brain extracellular fluid are similar to levels in plasma, such systems may serve, in conjunction with transport systems in cerebral capillaries, to limit the entry of amino acids into brain cells when blood amino levels are near the normal physiological range.  相似文献   

14.
Abstract— Phenylalanine ammmonia-lyase (PAL), an enzyme which converts phenylalanine (Phe) and tyrosine (Tyr) to trans-p-cinnamic acid and trans-p-coumaric acid, respectively, was administered to mice and its effect on the conversion of [3H]tryptophan to 5-[3H]HT in the brain was measured. Although PAL significantly depleted plasma Tyr, it has little or no effect on either brain Tyr or catecholamine concentrations. Endogenous brain tryptophan levels were significantly increased 2 h after PAL administration, brain 5-HT was dramatically increased 4 h following PAL and each returned to baseline levels by 8 h. This return to baseline was accompanied by a marked decrease in the fraction of tryptophan converted to 5-HT during a 20 min pulse period preceding death, suggesting the activation of a compensatory decrease in 5-HT synthesis in response to increased 5-HT concentration. These data suggest that PAL administration readily produces reversible alterations in 5-HT synthesis and that this may be a fruitful approach to studying brain 5-HT function.  相似文献   

15.
In Brevibacterium flavum, prephenate dehydratase in the phenylalanine specific biosynthetic pathway was strongly inhibited by phenylalanine and activated by tyrosine. Furthermore. the inhibition by phenylalanine was completely reversed by tyrosine. Inhibition by tyrosine of prephenate dehydrogenase in the tyrosine specific pathway was very weak. Overall regulation mechanism of the aromatic amino acid biosynthesis in B. flavum was proposed on the bases of these results and the previous findings on 3-deoxy-D-arabino-heptulosonate-7- phosphate synthetase(DAHP synthetase*) of the common pathway and on anthranilate synthetase of the tryptophan specific pathway. Two types of m-fluorophenylalanine(mFP) resistant mutants which accumulated phenylalanine alone or both phenylalanine and tyrosine, respectively, were derived. The accumulation in the former mutants was inhibited by tyrosine, but that in the latter was affected neither by tyrosine nor by phenylalanine. DAHP synthetase of the latter mutants had been desensitized from the synergistic feedback inhibition by tyrosine and phenylalanine, while prephenate dehydratase of the former mutants had been desensitized in the feedback inhibition by phenylalanine. Tyrosine auxotroph accumulated phenylalanine under tyrosine limitation and its accumulation was inhibited by the excessive addition of tyrosine. Phenylalanine auxotroph accumulated tyrosine under phenylalanine limitation and its accumulation was inhibited by the excessive addition of phenylalanine. These results in vivo strongly supported the proposed regulation mechanism in which synthesis of phenylalanine in preference to tyrosine was assumed.  相似文献   

16.
Tryptophan was found to be degraded in Saccharomyces cerevisiae mainly to tryptophol. Upon chromatography on DEAE-cellulose two aminotransferases were identified: Aromatic aminotransferase I was constitutively synthesized and was active in vitro with tryptophan, phenylalanine or tyrosine as amino donors and pyruvate, phenylpyruvate or 2-oxoglutarate as amino acceptors. The enzyme was six times less active with and had a twenty times lower affinity for tryptophan (K m=6 mM) than phenylalanine or tyrosine. It was postulated thus that aromatic aminotransferase I is involved in vivo in the last step of tyrosine and phenylalanine biosynthesis. Aromatic aminotransferase II was inducible with tryptophan but also with the other two aromatic amino acids either alone or in combinations. With tryptophan as amino donor the enzyme was most active with phenylpyruvate and not active with 2-oxoglutarate as amino acceptor; its affinity for tryptophan was similar as for the other aromatic amino acids (K m=0.2–0.4 mM). Aromatic aminotransferase II was postulated to be involved in vivo mainly in the degradation of tryptophan, but may play also a role in the degradation of the other aromatic amino acids.A mutant strain defective in the aromatic aminotransferase II (aat2) was isolated and its influence on tryptophan accumulation and pool was studied. In combination with mutations trp2 fbr, aro7 and cdr1-1, mutation aat2 led to a threefold increase of the tryptophan pool as compared to a strain with an intact aromatic aminotransferase II.  相似文献   

17.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

18.
The transport of tryptophan across the blood-brain barrier is used as a specific example of a general approach by which rates of amino acid influx into brain may be predicted from existing concentrations of amino acids in plasma. The kinetics of inhibition of [14C]tryptophan transport by four natural neutral amino acids (phenylalanine, leucine, methionine, and valine) and one synthetic amino acid (α-methyl tyrosine) is studied with a tissue-sampling, single injection technique in the barbiturate-anesthetized rat. The equality of the K1 (determined from cross-inhibition studies) and the Km (determined from auto-inhibition data) for neutral amino acid transport indicate that these amino acids compete for a single transport site in accordance with the kinetics of competitive inhibition. Based on equations derived for competitive inhibition, apparent Km values are computed for the essential neutral amino acids from known data on amino acid transport Km and plasma concentrations. The apparent Km values make possible predictions of the in vivo rates of amino acid influx into brain based on given plasma amino acid concentrations. Finally, a method is presented for determining transport constants from saturation data obtained with single injection techniques.  相似文献   

19.
Blood-brain barrier (BBB) transport of choline and certain choline analogs was studied in adult and suckling rats, and additionally compared in the paleocortex and neocortex of adult rats. Saturable uptake was characterized by a single kinetic system in all cases examined, and in adult rat forebrains we determined a Km= 442 ± 60 μM and Vmax= 10.0 ± 0.6 nmol min-1 g-1. In 14–15-day-old suckling forebrains a similar Km (= 404 ± 88 μM) but higher Vmax (= 12.5 ± 1.5 nmol min-1 g-1) was determined. When choline uptake was compared in two regions of the forebrain, similar Michaelis-Menten constants were determined but a higher uptake velocity was found in the neocortex (i.e. neocortex Km= 310 ± 103 μM and Vmax= 12.6 ± 2.8 nmol min-1g-1; paleocortex Km= 217 ± 76 μM and Vmax= 7.2 ± 1.5 nmol min-1 g-1). Administration of radiolabelled choline at low (5 μM) and high (100 μM) concentrations, followed by microwave fixation 60 s later and chloroform-methanol-water separations of the homogenized brain did not suggest a relationship between concentration and the appearance of label in lipid or aqueous fractions as observed in another in-vitro study elaborating two-component kinetics of choline uptake. It was observed that 60s after carotid injection 12–14% of the radiolabel in the ipsilateral cortex was found in the chloroform-soluble fraction. Hemicholinium-3 (Ki= 111 μM), dimethylaminoethanol (Ki= 42 μM), tetraethyl ammonium chloride, tetramethyl ammonium chloride, 2-hydroxyethyl triethylammonium iodide, carnitine, normal rat serum, and to a lesser extent lithium and spermidine all inhibited choline uptake in the BBB. Unsubstituted ammonium chloride and imipramine did not inhibit choline uptake. No difference was observed in blood-brain barrier choline uptake of unanesthetised, carotid artery-catheterized animals, and comparable sodium pentobarbital-anesthetized controls.  相似文献   

20.
Following administration of x-methyltryptophan (AMTP) (50 mg/kg) there was a time dependent decrease of serotonin and a concomitant increase of α-methyl-5-hydroxy-tryptamine (AM-5-HT) in most cerebral areas. AMTP is hydroxylated to α-methyl-5-hydroxytryptophan (AM-5-HTP) by cerebral tryptophan hydroxylase in vitro and in vivo. Hydroxylation of AMTP in vitro and in vivo was markedly inhibited in p-chlorophenylalanine (p-CP) treated rats. After administration of AMTP, the conversion in vivo of tyrosine to norepinephrine was inhibited. This inhibition was not apparent in p-CP pretreated animals. p-Chloroamphetamine (p-CA) (10 mg/kg) lowered serotonin and AM-5-HT levels in some areas of the brain, but unlike p-CP, alone or in combination with AMTP it did not significantly inhibit hydroxylation of tryptophan (Trp). AMTP, as substrate of tryptophan hydroxylase, has a Km of 1.08 × 10-4 M (using 6-MPH4, as cofactor) and as competitive inhibitor, a K1 of 2.09 × 10-4M with L-Trp as substrate. AMTP becomes an uncompetitive inhibitor when its concentration is equal to or exceeds that of L-Trp. D-AMTP is neither a substrate nor an inhibitor of tryptophan hydroxylase. DL-AM-5-HTP (K1, 1.5 × 10-5 M) and AM-5-HT (K1 4.0 × 10-5 M) are competitive inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号