首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein A-I (apoA-I) is the major protein associated with high density lipoprotein (HDL), and its plasma levels have been correlated with protection against atherosclerosis. Unfortunately, the structural basis of this phenomenon is not fully understood. Over 25 years of study have produced two general models of apoA-I structure in discoidal HDL complexes. The "belt" model states that the amphipathic helices of apoA-I are aligned perpendicular to the acyl chains of the lipid bilayer, whereas the "picket fence" model argues that the helices are aligned parallel with the acyl chains. To distinguish between the two models, various single tryptophan mutants of apoA-I were analyzed in reconstituted, discoidal HDL particles composed of phospholipids containing nitroxide spin labels at various positions along the acyl chain. We have previously used this technique to show that the orientation of helix 4 of apoA-I is most consistent with the belt model. In this study, we performed additional control experiments on helix 4, and we extended the results by performing the same analysis on the remaining 22-mer helices (helices 1, 2, 5, 6, 7, 8, and 10) of human apoA-I. For each helix, two different mutants were produced that each contained a probe Trp occurring two helical turns apart. In the belt model, the two Trp residues in each helix should exhibit maximal quenching at the same nitroxide group position on the lipid acyl chains. For the picket fence model, maximal quenching should occur at two different levels in the bilayer. The results show that the majority of the helices are in an orientation that is consistent with a belt model, because most Trp residues localized to a position about 5 A from the center of the bilayer. This study corroborates a belt hypothesis for the majority of the helices of apoA-I in phospholipid discs.  相似文献   

2.
Zhu HL  Atkinson D 《Biochemistry》2004,43(41):13156-13164
Because of its role in reverse cholesterol transport, human apolipoprotein A-I is the most widely studied exchangeable apolipoprotein. Residues 1-43 of human apoA-I, encoded by exon 3 of the gene, are highly conserved and less well understood than residues 44-243, encoded by exon 4. In contrast to residues 44-243, residues 1-43 do not contain the 22 amino acid tandem repeats thought to form lipid binding amphipathic helices. To understand the structural and functional roles of the N-terminal region, we studied a synthetic peptide representing the first 44 residues of human apoA-I ([1-44]apoA-I). Far-ultraviolet circular dichroism spectra showed that [1-44]apoA-I is unfolded in aqueous solution. However, in the presence of n-octyl beta-d-glucopyranoside, a nonionic lipid mimicking detergent, above its critical micelle concentration ( approximately 0.7% at 25 degrees C), sodium dodecyl sulfate, an ionic detergent, above its CMC ( approximately 0.2%), trimethylamine N-oxide, a folding inducing organic osmolyte, or trifluoroethanol, an alpha-helix inducer, alpha-helical structure was formed in [1-44]apoA-I up to approximately 45%. Characterization by density gradient ultracentrifugation and visualization by negative staining electron microscopy demonstrated that [1-44]apoA-I interacts with dimyristoylphosphatidylcholine (DMPC) over a wide range of lipid:peptide ratios from 1:1 to 12:1 (w/w). At 1:1 DMPC:[1-44]apoA-I (w/w) ratio, discoidal complexes with composition approximately 4:1 (w/w) and approximately 100 A diameter were formed in equilibrium with free peptide. At higher ratios, discoidal complexes were shown to exist together with a heterogeneous population of lipid vesicles with peptide bound also in equilibrium with free peptide. When bound to DMPC, [1-44]apoA-I has approximately 60% helical structure, independent of whether it forms discoidal or vesicular complexes. This helical content is consistent with that of the predicted G helix (residues 8-33). Our data provide the first strong and direct evidence that the N-terminal region of apoA-I binds lipid and can form discoidal structures and a heterogeneous population of vesicles. In doing so, approximately 60% of this region folds into alpha-helix from random coil. The composition of the 100 A discoidal complex is approximately 5 [1-44]apoA-I and approximately 150 DMPC molecules per disk. The helix length of 5 [1-44]apoA-I molecules in lipid-bound form is just long enough to wrap around the DMPC bilayer disk once.  相似文献   

3.
Because of the complexity arising from the large molecular size and the amino acid sequence homologies of IgG-binding domains of Staphylococcal Protein A (SpA), we have introduced, a combination of stable isotope labeling and both qualitative and quantitative investigations of the structural dependence of the NMR chemical shifts for its structure analysis. In order to enable selective isotope labeling with high efficiency, a mutated low molecular weight Protein A (LPA; MWt = 27 kDa) which consists of E, D, A, B and 13 residues of the C-domain was used in this study. Amide proton chemical shifts, measured using uniformly 15N-labeled LPA and LPA labeled selectively with 15N-alanine, show that the turn between helices 1 and 2, and its tertiary interactions with helix 3, are very similar in all domains. This contradicts previous results obtained using independent structure calculations on isolated domains. The close similarity in NH and 15N chemical shifts of alanine residues in the interdomain linker suggests that the linker maintains a similar structure both in isolated domains and in the intact protein. We show that the high-field shifted methyl signal of Ala 48 is affected by the ring-current effect arising from Phe 30, and has a very similar helical environment in all four domains. Thus, helix 3 is present in all domains, as we previously reported [Kikuchi et al., J Biochem Biophys Method, 1999:38:203-208], even though it is not observed in the crystal structure [Deisenhofer J. Biochemistry 1981;20:2361-2370].  相似文献   

4.
Apolipoprotein A-I (apoA-I), the major protein component of serum high-density lipoproteins (HDL), was found to inhibit herpes simplex virus (HSV)-induced cell fusion at physiological (approximately 1 microM) concentrations, whereas HDL did not exert any inhibitory effect. Lipid-associating, synthetic amphipathic peptides corresponding to residues 1-33 (apoA-I[1-33]) or residues 66-120 (apoA-I[66-120]) of apoA-I, also inhibited HSV-induced cell fusion, whereas a peptide corresponding to residues 8-33 of apoA-I (apoA-I[8-33]), which fails to associate with lipids, did not exert any inhibitory effect. These results suggest that lipid binding may be a prerequisite for peptide-mediated fusion inhibition. Consistent with this idea, a series of lipid-binding 22-amino-acid-residue-long synthetic amphipathic peptides that correspond to the amphipathic helical domains of apoA-I (A-I consensus series), or 18-residue-long model amphipathic peptides (18A series), were found to exert variable levels of fusion-inhibitory activity. The extent of fusion-inhibitory activity did not correlate with hydrophobic moment, hydrophobicity of the nonpolar face, helix-forming ability, or lipid affinity of the different peptides. Peptides in which the nonpolar face was not interrupted by a charged residue displayed greater fusion-inhibitory activity. Also, the presence of positively charged residues at the polar-nonpolar interface was found to correlate with higher fusion-inhibitory activity.  相似文献   

5.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

6.
Previous evidence indicated that discoidal reconstituted high density lipoproteins (rHDL) of apolipoprotein A-I (apoA-I) can interact with lipid membranes (Tricerri, M. A., Córsico, B., Toledo, J. D., Garda, H. A., and Brenner, R. R. (1998) Biochim. Biophys. Acta 1391, 67-78). With the aim of studying this interaction, photoactivable reagents and protein cleavage with CNBr and hydroxylamine were used. The generic hydrophobic reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine gave information on the apoA-I regions in contact with the lipid phase in the rHDL discs. Two protein regions loosely bound to lipids were detected: a C-terminal domain and a central one located between residues 87 and 112. They consist of class Y amphipathic alpha-helices that have a different distribution of the charged residues in their polar faces by comparison with class A helices, which predominate in the rest of the apoA-I molecule. The phospholipid analog 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoro-methyl-3-H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, which does not undergo significant exchange between membranes and lipoproteins, was used to identify the apoA-I domain directly involved in the interaction of rHDL discs with membranes. By incubating either rHDL or lipid-free apoA-I with lipid vesicles containing 125I-TID-PC, only the 87-112 apoA-I segment becomes labeled after photoactivation. These results indicate that the central domain formed by two type Y helices swings away from lipid contact in the discoidal lipoproteins and is able to insert into membrane bilayers, a process that may be of great importance for the mechanism of cholesterol exchange between high density lipoproteins and cell membranes.  相似文献   

7.
Apolipoprotein A-IV (apoA-IV) is an exchangeable apolipoprotein that shares many functional similarities with related apolipoproteins such as apoE and apoA-I but has also been implicated as a circulating satiety factor. However, despite the fact that it contains many predicted amphipathic alpha-helical domains, relatively little is known about its tertiary structure. We hypothesized that apoA-IV exhibits a characteristic functional domain organization that has been proposed to define apoE and apoA-I. To test this, we created truncation mutants in a bacterial system that deleted amino acids from either the N- or C-terminal ends of human apoA-IV. We found that apoA-IV was less stable than apoA-I but was more highly organized in terms of its cooperativity of unfolding. Deletion of the extreme N and C termini of apoA-IV did not significantly affect the cooperativity of unfolding, but deletions past amino acid 333 on the C terminus or amino acid 61 on the N terminus had major destabilizing effects. Functionally, apoA-IV was less efficient than apoA-I at clearing multilamellar phospholipid liposomes and promoting ATP-binding cassette transporter A1-mediated cholesterol efflux. However, deletion of a C-terminal region of apoA-IV, which is devoid of predicted amphipathic alpha helices (amino acids 333-376) stimulated both of these activities dramatically. We conclude that the amphipathic alpha helices in apoA-IV form a single, large domain that may be similar to the N-terminal helical bundle domains of apoA-I and apoE but that apoA-IV lacks the C-terminal lipid-binding and cholesterol efflux-promoting domain present in these apolipoproteins. In fact, the C terminus of apoA-IV appears to reduce the ability of apoA-IV to interact with lipids and promote cholesterol efflux. This indicates that, although apoA-IV may have evolved from gene duplication events of ancestral apolipoproteins and shares the basic amphipathic helical building blocks, the overall localization of functional domains within the sequence is quite different from apoA-I and apoE.  相似文献   

8.
An 80 amino acid polypeptide corresponding to the DNA-binding domain (DBD) of the human retinoic acid receptor beta (hRAR-beta) has been studied by 1H homonuclear and 15N-1H heteronuclear two- and three-dimensional (2D and 3D) NMR spectroscopy. The polypeptide has two putative zinc fingers homologous to those of the receptors for steroid and thyroid hormones and vitamin D3. The backbone 1H resonances as well as over 90% of the side-chain 1H resonances have been assigned by 1H homonuclear 2D techniques except for the three N-terminal residues. The assignments have been confirmed further by means of 15N-1H heteronuclear 3D techniques, which also yielded the assignments of the 15N resonances. Additionally, stereospecific assignments of methyl groups of five valine residues were made. Sequential and medium-range NOE connectivities indicate several elements of secondary structure including two alpha-helices consisting of residues E26-Q37 and Q61-E70, a short antiparallel beta-sheet consisting of residues P7-F9 and S23-C25, four turns consisting of residues P7-V10, I36-N39, D47-C50, and F69-G72, and several regions of extended peptide conformation. Similarly, two helices are found in the glucocorticoid receptor (GR) DBD in solution [H?rd et al. (1990) Science 249, 157-160] and in crystal [Luisi et al. (1991) Nature 352, 497-505], and in the estrogen receptor (ER) DBD in solution [Schwabe et al. (1990) Nature 348, 458-461], although the exact positions and sizes of the helices differ somewhat. Furthermore, long-range NOEs suggest the existence of a hydrophobic core formed by the two helices.  相似文献   

9.
The C-H proton resonances of alpha-mating factor, yeast pheromone, in 2H2O solution were assigned. The phase transition temperature of perdeuterated dipalmitoylglycerophosphocholine (suspension) was found to be 35.5 degrees C. In the presence of vesicles of this phospholipid, the exchange broadening and transferred nuclear Overhauser effect (TRNOE) of peptide proton resonances (at 50 degrees C) were analyzed. The mode of binding of this peptide with the phospholipid bilayer was elucidated. The N-terminal nine residues (Trp1-Gly9) are tightly bound to the bilayer, while the C-terminal four residues (Gln10-Tyr13) are left free in aqueous phase. This is consistent with the previous observation that the C-terminal three residues (Pro11-Tyr13) are not essential for the activity of this pheromone [Masui, Y. et al. (1977) Biochem. Biophys. Res. Commun. 78, 534-538]. Furthermore, from the TRNOE analyses, the conformation of the membrane-bound N-terminal part of alpha-mating factor was elucidated; the residues Trp1-Gln5 form a compact helical structure while the residues Lys7-Gly9 form an extended structure. A similar TRNOE was also observed for an active decapeptide analog Trp1-Gln10. This confirms the previous conclusion that the physiological activities of this pheromone and analog peptides are correlated with the conformations of membrane-bound peptide molecules [Higashijima, T. et al. (1983) FEBS Lett. 159, 229-232].  相似文献   

10.
The recent NMR study of a cis-syn photodimer B-DNA 10mer-duplex (Taylor et al., Biochemistry 29, 8858 (1990)) showed the cyclobutane (CB) ring with a puckered-twist in a right-handed sense (CB+). This is opposite to that of the crystal structure of cis-syn d-TpT(cyano-ethyl)(d-T[p]T-CE) which has a left-handed puckered-twist (CB-)(Hruska et al., Biopolymers 25, 1399 (1986)). 2D-NOESY experiments were performed on cis-syn d-T[p]T and cis-syn U[p]U at 25 and 35 degrees C, respectively, to investigate the puckering mode of the cyclobutane ring of isolated cis-syn photodimers of the DNA and RNA types. The DNA photodimers showed interconversion of the puckered-twist of the cyclobutane ring between CB- and CB+ and interconversion of the glycosidic angle between syn and anti in both nucleoside residues. Interestingly, in the RNA photodimer only the CB- puckering mode with syn conformation of the glycosidic angle of the U[p]- was observed. These different dynamical behaviors of the photodimer in DNA and RNA might portend differential conformational effects on their corresponding normal nucleic acid regions. In addition these results indicate differences in the cyclobutane ring conformation of the cis-syn d-T[p]T, not only in solution and crystalline states, but also when the dimer is isolated and in duplex forms.  相似文献   

11.
Lipkind GM  Fozzard HA 《Biochemistry》2001,40(23):6786-6794
Using the KcsA bacterial K+ channel crystal structure [Doyle, D. A., et al. (1998) Science 280, 69-74] and the model of the outer vestibule of the Na+ channel [Lipkind, G. M., and Fozzard, H. A. (2000) Biochemistry 39, 8161-8170] as structural templates, we propose a structural model of the outer vestibule and selectivity filter of the pore of the Ca2+ channel (alpha1C or Ca(v)1.2). The Ca2+ channel P loops were modeled by alpha-helix-turn-beta-strand motifs, with the glutamate residues of the EEEE motif located in the turns. P loops were docked in the extracellular part of the inverted teepee structure formed by S5 and S6 alpha-helices with backbone coordinates from the M1 and M2 helices of the KcsA crystal structure. This construction results in a conical outer vestibule that tapers to the selectivity filter at the bottom. The modeled selectivity ring forms a wide open pore ( approximately 6 A) in the absence of Ca2+. When Ca2+ is present ( approximately 1 microM), all four glutamate side chains move to the center and form a cage around the dehydrated Ca2+ ion, blocking the pore. In the millimolar concentration range, Ca2+ also interacts with two low-affinity sites located externally and internally, which were modeled by the same carboxylate groups of the selectivity filter. Calculation of the resulting electrostatic potentials show that the single Ca2+ ion is located in an electrostatic trap. Only when three Ca2+ ions are bound simultaneously in the high- and low-affinity sites of the selectivity filter is Ca2+ able to overcome electrostatic attraction, permitting Ca2+ flux.  相似文献   

12.
The structure of a synthetic peptide comprising the 28 amino-terminal residues of actin has been examined by 1H-NMR and CD spectroscopy. The peptide is largely unstructured and flexible in solution but becomes increasingly structured at higher trifluoroethanol (TFE) concentrations. As judged by CD with the use of two additional peptides (actin 1-20 and actin 18-28), TFE induces formation of up to 48% helical content within residues 1-20, while residues 21-28 exhibit no helical propensity. Similar results were obtained by using NMR-derived distance information in restrained molecular dynamics calculations. The calculated structure of actin 1-28 peptide in 80% TFE is well defined for the first 23 residues with a backbone root mean square deviation of 0.5 A. Two helices are formed from residues 4-13 and 16-20, and a beta-turn is formed from residues 13-16. The N-terminal residues 1-3 exhibit increased flexibility and a helix-like conformation while the C-terminal residues 21-28 show no regular secondary structure. These results are compared with the predicted secondary structure and the structure of the corresponding sequence in the crystal structure of actin [Kabsch et al. (1990) Nature 347, 37-44]. The significance of the TFE-induced peptide structure is discussed.  相似文献   

13.
Apolipoprotein A-I (apoA-I) is the main protein of plasma high-density lipoproteins (HDL, or good cholesterol) that remove excess cell cholesterol and protect against atherosclerosis. In hereditary amyloidosis, mutations in apoA-I promote its proteolysis and the deposition of the 9-11 kDa N-terminal fragments as fibrils in vital organs such as kidney, liver, and heart, causing organ damage. All known amyloidogenic mutations in human apoA-I are clustered in two residue segments, 26-107 and 154-178. The X-ray crystal structure of the C-terminal truncated human protein, Δ(185-243)apoA-I, determined to 2.2 ? resolution by Mei and Atkinson, provides the structural basis for understanding apoA-I destabilization in amyloidosis. The sites of amyloidogenic mutations correspond to key positions within the largely helical four-segment bundle comprised of residues 1-120 and 144-184. Mutations in these positions disrupt the bundle structure and destabilize lipid-free apoA-I, thereby promoting its proteolysis. Moreover, many mutations place a hydrophilic or Pro group in the middle of the hydrophobic lipid-binding face of the amphipathic α-helices, which will likely shift the population distribution from HDL-bound to lipid-poor/free apoA-I that is relatively unstable and labile to proteolysis. Notably, the crystal structure shows segment L44-S55 in an extended conformation consistent with the β-strand-like geometry. Exposure of this segment upon destabilization of the four-segment bundle probably initiates the α-helix to β-sheet conversion in amyloidosis. In summary, we propose that the amyloidogenic mutations promote apoA-I proteolysis by destabilizing the protein structure not only in the lipid-free but also in the HDL-bound form, with segment L44-S55 providing a likely template for the cross-β-sheet conformation.  相似文献   

14.
Apolipoprotein A-I (apoA-I) plays important structural and functional roles in plasma high density lipoprotein (HDL) that is responsible for reverse cholesterol transport. However, a molecular understanding of HDL assembly and function remains enigmatic. The 2.2-? crystal structure of Δ(185-243)apoA-I reported here shows that it forms a half-circle dimer. The backbone of the dimer consists of two elongated antiparallel proline-kinked helices (five AB tandem repeats). The N-terminal domain of each molecule forms a four-helix bundle with the helical C-terminal region of the symmetry-related partner. The central region forms a flexible domain with two antiparallel helices connecting the bundles at each end. The two-domain dimer structure based on helical repeats suggests the role of apoA-I in the formation of discoidal HDL particles. Furthermore, the structure suggests the possible interaction with lecithin-cholesterol acyltransferase and may shed light on the molecular details of the effect of the Milano, Paris, and Fin mutations.  相似文献   

15.
Poly(γ-benzyl-d-l-glutamate) with strict alternation of l and d residues is found to exist, in addition to the αDL and πDL4.4 helical structures already described (Heitz et al., 1975a), in four more helical structures. Models based on double helices made of antiparallel strands are proposed for all four structures, based on infrared, X-ray and electron diffraction data. These double helices are, like the single-stranded πDL helices, specific to polypeptides with a strict stereosequence of alternating l and d residues. The diameter of the helical core of three of these helices appears to depend on the dimensions of the solvent molecules. Conformational angles (located in the β regions) and atomic co-ordinates determined by conformational energy analysis are given for the four structures. Experimental conditions used to obtain these helices, and to induce transconformations between the various helical structures of PBd-lG are described. The present investigations on PBd-lG help to make more precise the structure and geometry of models proposed (Veatch et al., 1974) for the antibiotic gramicidin A.  相似文献   

16.
Swain KE  Falke JJ 《Biochemistry》2007,46(48):13684-13695
The HAMP domain is a conserved motif widely distributed in prokaryotic and lower eukaryotic organisms, where it is often found in transmembrane receptors that regulate two-component signaling pathways. The motif links receptor input and output modules and is essential to receptor structure and signal transduction. Recently, a structure was determined for a HAMP domain isolated from an unusual archeal membrane protein of unknown function [Hulko, M., et al. (2006) Cell 126, 929-940]. This study uses cysteine and disulfide chemistry to test this archeal HAMP model in the full-length, membrane-bound aspartate receptor of bacterial chemotaxis. The chemical reactivities of engineered Cys residues scanned throughout the aspartate receptor HAMP region are highly correlated with the degrees of solvent exposure of corresponding positions in the archeal HAMP structure. Both domains are homodimeric, and the individual subunits of both domains share the same helix-connector-helix organization with the same helical packing faces. Moreover, disulfide mapping reveals that the four helices of the aspartate receptor HAMP domain are arranged in the same parallel, four-helix bundle architecture observed in the archeal HAMP structure. One detectable difference is the packing of the extended connector between helices, which is not conserved. Finally, activity studies of the aspartate receptor indicate that contacts between HAMP helices 1 and 2' at the subunit interface play a critical role in modulating receptor on-off switching. Disulfide bonds linking this interface trap the receptor in its kinase-activating on-state, or its kinase inactivating off-state, depending on their location. Overall, the evidence suggests that the archeal HAMP structure accurately depicts the architecture of the conserved HAMP motif in transmembrane chemoreceptors. Both the on- and off-states of the aspartate receptor HAMP domain closely resemble the archeal HAMP structure, and only a small structural rearrangement occurs upon on-off switching. A model incorporating HAMP into the full receptor structure is proposed.  相似文献   

17.
Soulages JL  Arrese EL 《Biochemistry》2000,39(34):10574-10580
The structure of the exchangeable apolipoprotein, apolipophorin-III from Locusta migratoria, apoLp-III, is described as a bundle of five amphipathic alpha-helices. To study the interaction of each of the helices of apoLp-III with a lipid surface, we designed five single-Trp mutants, each containing a Trp residue in a different alpha-helix. The Trp residues were located in the nonpolar domains of the amphipathic alpha-helices. The kinetics of the spontaneous interaction of the mutants with dimyristoylphosphatidylcholine (DMPC) indicated that all mutants behaved as typical exchangeable apolipoproteins. Circular dichroism in the far-UV indicated that all proteins have a high and similar helical content in the lipid-bound state. The interaction of the Trp residues with the lipid surface was investigated in recombinant lipoprotein particles made with DMPC. The properties of the Trp residues were investigated by fluorescence spectroscopy. These studies showed major changes in the spectroscopic properties of the Trp residues upon binding to lipid. These changes are observed with all single-Trp mutants, indicating that a major conformational change, which affects the properties of all helices, takes place upon binding to lipid. The position of the fluorescence maximum, the quenching efficiency of acrylamide as determined by steady-state and time-resolved fluorescence, and the fluorescence lifetimes of the single-Trp mutants suggest that helices 1, 4, and 5 interact with the nonpolar domains of the lipid. The properties of the Trp in helices 2 and 3 suggest that these helices adopt a different binding configuration than helices 1, 4, and 5. Helices 2 and 3 appear to be interacting with the polar headgroups of the phospholipids or constitute a different domain that does not interact with the lipid surface.  相似文献   

18.
The preruminant calf (Bos spp.) is a model of considerable interest with regard to hepatic and intestinal lipoprotein metabolism (Bauchart et al., J. Lipid Res. (1989) 30, 1499–1514 and Laplaud et al., J. Lipid Res. (1990) 31, 1781–1792). As a preliminary step towards future experiments dealing with HDL metabolism in the calf, we have purified apoA-I from this animal and determined its complete amino acid sequence. Thus, approx. 10% of calf apoA-I was shown to contain a propeptide, with the sequence Arg-His-Phe-Trp-Gln-Gln. Enzymatic cleavage of apoA-I resulted in 10 proteolytic peptides. The complete apoA-I sequence was obtained after alignment of peptides on the basis of their homologies with those from rabbit apoA-I. Thus calf apoA-I consists of 241 amino acid residues, and exhibits high sequence homology with all mammalian apoA-I's studied to date. The bovine protein contained 10 hydrophobic amphipathic helical regions, occurring between residues 43–64, 65–86, 87–97, 98–119, 120–141, 142–163, 164–184, 185–206, 207–217 and 218–241. A computer-constructed phylogenetic tree showed that bovine apoA-I was more closely related to its dog counterpart, including the presence of a single methionine, than to the corresponding macaque and human proteins. Comparative predictions of the respective antigenic structures of human and bovine apoA-I's using the Hopp-Woods algorithm indicated similar positions for all 13 detectable antigenic sites, among which 7 were of identical, or closely related, amino acid composition. This finding was confirmed by demonstration of partial immunological identity between the two proteins upon immunodiffusion analysis, a result obtained using a monospecific rabbit antiserum against bovine apoA-I. Finally, comparison of sequence homology between bovine apoA-I and the lecithin : cholesterol acyl transferase (LCAT) activating region of human apoC-I suggests that several LCAT activating domains may be present in calf apoA-I.  相似文献   

19.
Two designed peptide sequences containing Trp residues at positions i and i + 5 (Boc-Leu-Trp-Val-Ala-Aib-Leu-Trp-Val-OMe, 1) as well as i and i + 6 (Boc-Leu-Trp-Val-Aib-Ala-Aib-Leu-Trp-Val-OMe, 2) containing one and two centrally positioned Aib residues, respectively, for helix nucleation, have been shown to form stable helices in chloroform solutions. Structures derived from nuclear magnetic resonance (NMR) data reveal six and seven intramolecularly hydrogen-bonded NH groups in peptides 1 and 2, respectively. The helical conformation of octapeptide 1 has also been established in the solid state by X-ray diffraction. The crystal structure reveals an interesting packing motif in which helical columns are stabilized by side chain-backbone hydrogen bonding involving the indole Nepsilon1H of Trp(2) as donor, and an acceptor C=O group from Leu(6) of a neighboring molecule. Helical columns also associate laterally, and strong interactions are observed between the Trp(2) and Trp(7) residues on neighboring molecules. The edge-to-face aromatic interactions between the indoles suggest a potential C-H...pi interaction involving the Czeta3H of Trp(2). Concentration dependence of NMR chemical shifts provides evidence for peptide association in solution involving the Trp(2) Nepsilon1H protons, presumably in a manner similar to that observed in the crystal.  相似文献   

20.
Hagemann H  Marcillat O  Buchet R  Vial C 《Biochemistry》2000,39(31):9251-9256
Two distinct methods were used to investigate the role of Trp residues during Mg-ADP binding to cytosolic creatine kinase (CK) from rabbit muscle: (1) Raman spectroscopy, which is very sensitive to the environment of aromatic side-chain residues, and (2) reaction-induced infrared difference spectroscopy (RIDS) and photolabile substrate (ADP[Et(PhNO(2))]), combined with site-directed mutagenesis on the four Trp residues of CK. Our Raman results indicated that the environment of Trp and of Tyr were not affected during Mg-ADP binding to CK. Analysis of RIDS of wild-type CK, inactive W227Y, and active W210,217,272Y mutants suggested that Trp227 was not involved in the stacking interactions. Results are consistent with Trp227 being essential to prevent water molecules from entering in the active site [as suggested by Gross, M., Furter-Graves, E. M., Wallimann, T., Eppenberger, H. M., and Furter, R. (1994) Protein Sci. 3, 1058-1068] and that another Trp could in addition help to steer the nucleotide in the binding site, although it is not essential for the activity of CK. Raman and infrared spectra indicated that Mg-ADP binding does not involve large secondary structure changes. Only 3-4 residues absorbing in the amide I region are directly implicated in the Mg-ADP binding (corresponding to secondary structure changes less than 1%), suggesting that movement of protein domains due to Mg-nucleotide binding do not promote large secondary structure changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号