首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly polymorphic CA repeat sequence was identified near the NCAM gene on chromosome 11q23. It should be a useful marker in the localization of genes responsible for neurological disorders that are known to map to this region.  相似文献   

2.
J Wagstaff  J R Chaillet  M Lalande 《Genomics》1991,11(4):1071-1078
A cDNA encoding the human GABAA receptor beta 3 subunit has been isolated from a brain cDNA library and its nucleotide sequence has been determined. This gene, GABRB3, has recently been mapped to human chromosome 15q11q13, the region deleted in Angelman and Prader-Willi syndromes. The association of distinct phenotypes with maternal versus paternal deletions of this region suggests that one or more genes in this region show parental-origin-dependent expression (genetic imprinting). Comparison of the inferred human beta 3 subunit amino acid sequence with beta 3 subunit sequences from rat, cow, and chicken shows a very high degree of evolutionary conservation. We have used this cDNA to map the mouse beta 3 subunit gene, Gabrb-3, in recombinant inbred strains. The gene is located on mouse chromosome 7, very closely linked to Xmv-33 between Tam-1 and Mtv-1, where two other genes from human 15q11q13 have also been mapped. This provides further evidence for a region of conserved synteny between human chromosome 15q11q13 and mouse chromosome 7. Proximal and distal regions of mouse chromosome 7 show genetic imprinting effects; however, the region of homology with human chromosome 15q11q13 has not yet been associated with these effects.  相似文献   

3.
Previously, we have described the clinical and molecular characterization of a de novo 14q13.1-q21.1 microdeletion, less than 3.5 Mb in size, in a patient with severe microcephaly, psychomotor retardation, and other clinical anomalies. Here we report the characterization of the genomic structure of the human tuberin-like protein gene 1 (TULIP1; approved gene symbol GARNL1), a CpGisland-associated, brain-expressed candidate gene for the neurological findings in our patient, and its murine homologue. The human TULIP1 gene was mapped to chromosome band 14q13.2 by fluorescence in situ hybridization of BAC clone RP11-355C3 (GenBank Accession No. AL160231), containing the 3' region of the gene. TULIP1 spans about 271 kb of human genomic DNA and is divided into 41 exons. An untranscribed, processed pseudogene of TULIP1 was found on human chromosome band 9q31.1. The active locus TULIP1, encoding a predicted protein of 2036 amino acids, is expressed ubiquitously in pre- and postnatal human tissues. The murine homologue Tulip1 spans about 220 kb of mouse genomic DNA and is also divided into 41 exons, encoding a predicted protein of 2035 amino acids. No pseudogene could be found in the available mouse sequence data. Several splicing variants were found. Considering the location, expression profile, and predicted function, TULIP1 is a strong candidate for several neurological features seen in 14q deletion patients. Additionally we searched for mutations in the coding region of TULIP1 in subjects from a family with idiopathic basal ganglia calcification (IBGC; Fahr disease), previously linked to chromosome 14q. We identified two novel SNPs in the intron-exon boundaries; however, they did not segregate only with affected subjects in the predicted model of an autosomal dominant disease such as IBGC.  相似文献   

4.
Four human homeo box-containing cDNAs isolated from mRNA of an SV40-transformed human fibroblast cell line have been regionally localized on the human gene map. One cDNA clone, c10, was found to be nearly identical to the previously mapped Hox-2.1 gene at 17q21. A second cDNA clone, c1, which is 87% homologous to Hox-2.2 at the nucleotide level but is distinct from Hox-2.1 and Hox-2.2, also maps to this region of human chromosome 17 and is probably another member of the Hox-2 cluster of homeo box-containing genes. The third cDNA clone, c8, in which the homeo box is approximately 84% homologous to the mouse Hox-1.1 homeo box region on mouse chromosome 6, maps to chromosome region 12q12----12q13, a region that is involved in chromosome abnormalities in human seminomas and teratomas. The fourth cDNA clone, c13, whose homeo box is approximately 73% homologous to the Hox-2.2 homeo box sequence, is located at chromosome region 2q31----q37. The human homeo box-containing cluster of genes at chromosome region 17q21 is the human cognate of the mouse homeo box-containing gene cluster on mouse chromosome 11. Other mouse homeo box-containing genes of the Antennapedia class (class I) map to mouse chromosomes 6 (Hox-1, proximal to the IgK locus) and 15 (Hox-3). A mouse gene, En-1, with an engrailed-like homeo box (class II) and flanking region maps to mouse chromosome 1 (near the dominant hemimelia gene). Neither of the class I homeo box-containing genes--c8 and c13--maps to a region of obvious homology to chromosomal positions of the presently known mouse homeo box-containing genes.  相似文献   

5.
Jiang Y  Zhang Y  Zhang P  Sang T  Zhang F  Ji T  Huang Q  Xie H  Du R  Cai B  Zhao H  Wang J  Wu Y  Wu H  Xu K  Liu X  Chan P  Wu X 《Human genetics》2012,131(7):1217-1224
While pathogenic copy number variations (CNVs) in 15q11.2 were recently identified in Caucasian patients with idiopathic generalized epilepsies (IGEs), the epilepsy-associated gene(s) in this region is/are still unknown. Our study investigated whether the CNVs in 15q11.2 are associated with childhood absence epilepsy (CAE) in Chinese patients and whether the selective magnesium transporter NIPA2 gene affected by 15q11.2 microdeletions is a susceptive gene for CAE. We assessed IGE-related CNVs by Affymetrix SNP 5.0 microarrays in 198 patients with CAE and 198 controls from northern China, and verified the identified CNVs by high-density oligonucleotide-based CGH microarrays. The coding region and exon-intron boundaries of NIPA2 were sequenced in all 380 patients with CAE and 400 controls. 15q11.2 microdeletions were detected in 3 of 198 (1.5%) patients and in no controls. Furthermore, we identified point mutations or indel in a heterozygous state of the NIPA2 gene in 3 out of 380 patients, whereas they were absent in 700 controls (P = 0.043). These mutations included two novel missense mutations (c.532A>T, p.I178F; c.731A>G, p.N244S) and one small novel insertion (c.1002_1003insGAT, p.N334_335EinsD). No NIPA2 mutation was found in 400 normal controls. We first identified that NIPA2, encoding a selective magnesium transporter, is a susceptible gene of CAE, and 15q11.2 microdeletions are important pathogenic CNVs for CAE with higher frequency in Chinese populations than that previously reported in Caucasians. The haploinsufficiency of NIPA2 may be a mechanism underlying the neurological phenotypes of 15q11.2 microdeletions.  相似文献   

6.
Childhood-onset proximal spinal muscular atrophy (SMA) is a heritable neurological disorder, which has been mapped by genetic linkage analysis to chromosome 5q13, in the interval between markers D5S435 and D5S557. Here, we present gene sequences that have been isolated from this interval, several of which show sequence homologies to exons of beta-glucuronidase. These gene sequences are repeated several times across the candidate region and are also present on chromosome 5p. The arrangement of these repetitive gene motifs is polymorphic between individuals. The high degree of variability observed may have some influence on the expression of the genes in the region. Since SMA is not inherited as a classical autosomal recessive disease, novel genomic rearrangements arising from aberrant recombination events between the complex repeats may be associated with the phenotype observed.  相似文献   

7.
We identified a novel giant gene encoding a transmembrane protein with CUB and sushi multiple domains on the human chromosome 8q23.3-q24.1 in which benign adult familial myoclonic epilepsy type 1 (BAFME1/FAME, OMIM:601068) has been mapped. This giant gene consists of 73 exons and spans over 1.2Mb on the genomic DNA region. It showed significant homology to two genes, CSMD1 gene on 8p23 and CSMD2 gene on 1p34, at reduced amino acid sequence level and hence we designated as CSMD3. The CSMD3 gene was expressed mainly in adult and fetal brains. We performed mutation analysis on the CSMD3 gene for seven patients with BAFME1/FAME, but no mutation was found in the coding sequence of the CSMD3 gene. Comparative genomic analysis revealed a conserved family of CSMD genes in the mouse and fugu genomes. Possible functions of the CSMD gene family are discussed.  相似文献   

8.
Mutations in ion channels have been shown to be responsible for a variety of neurological and muscular diseases. The voltage-gated chloride channel CLCN3 was recently mapped to chromosomal region 4q32. We are analysing a young female patient with Wolf-Hirschhorn syndrome and chorea associated with an inversion-deletion of chromosome 4 [46XX,inv(4)del(4)(qter→q33:: p15.32→q33]. Considering that chorea in this patient might be due to the disruption of a gene at either of the 4p15.32 or 4q33 breakpoints, CLCN3 was considered as a candidate gene. We showed by FISH analysis with a CLCN3 YAC that the gene was not broken by the inv-del event, and was therefore an unlikely candidate. Using high resolution techniques, we refined the localisation of CLCN3 to 4q33. Received: 15 June 1997 / Accepted: 5 November 1997  相似文献   

9.
We have cloned the complete coding region for a human homologue of the Drosophila melanogaster sluggish-A and yeast PUT1 genes, previously shown to encode proline oxidase activity in these organisms. The predicted 516-residue human protein shows strong homology (51% amino acid sequence identity) to the D. melanogaster protein, indicating that this new human gene may encode proline oxidase. Northern analysis shows that the gene is expressed in human lung, skeletal muscle and brain, to a lesser extent in heart and kidney, and weakly in liver, placenta and pancreas. The gene was mapped by fluorescence in situ hybridization and by in situ hybridization with a [3H]-labelled DNA probe to chromosome 22q11.2, a region previously implicated in type-I hyperprolinaemia in a case of CATCH 22 syndrome, a contiguous gene deletion syndrome involving 22q11. Taken together, the evidence indicates that this new human gene is a good candidate gene for type-I hyperprolinaemia. In view of the neurological phenotype of the D. melanogaster sluggish-A mutant, it is of interest that schizophrenia and bipolar disorder susceptibility genes also map in this region. Received: 14 April 1997 / Accepted: 17 June 1997  相似文献   

10.

Background

Although the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.

Results

We found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.

Conclusions

Through the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks.  相似文献   

11.
Summary Somatic cell hybrids have been created between transformed mouse 3T3 cells and fibroblasts from a retino-blatoma patient with normal red-cell esterase-D (ESD) levels and a constitutional deletion of chromosome region 13q14-q31. In one subclone, which has retained the deletion chromosome but not the homologous normal copy, we have demonstrated the presence of the human ESD gene sequence. The breakpoint in this patient therefore must have occurred between the ESD gene and the retinoblastoma (Rb) predisposition locus. We have also been able to demonstrate that the ESD gene lies proximally to be the Rb gene in region 13q14. The recently isolated 4.7R cDNA gene sequence was absent from the deletion-containing hybrid, a finding consistent with the hypothesis that this sequence represents the Rb gene itself.  相似文献   

12.
May-Hegglin anomaly (MHA) is a rare autosomal dominant platelet disorder characterized by the triad of giant platelets, thrombocytopenia and leukocyte inclusions. Both the molecular and the genetic defects responsible for this disorder remain unknown. In order to map the gene responsible for MHA, we performed a genome-wide linkage study using highly polymorphic short tandem repeat markers in a single Japanese MHA family. Significant linkage was obtained for the markers on the long arm of chromosome 22 (22q12.3-q13.2), with a maximum two-point lod score of 4.52 at a recombination fraction of 0.00 for the markers D22S1142 and D22S277. Haplotype analysis mapped a critical region for the disease locus to a 13.6-centimorgan region, between D22S280 and D22S272. The relative proximity of the platelet GPIbbeta gene (22q11.2) to this region, as well as its involvement in an isolated giant platelet disorder, suggested a possible involvement of GPIbbeta mutations in MHA. However, DNA-sequencing analysis in two patients revealed no abnormality in the sequence of the GPIbbeta gene. This is the first report of linkage for MHA, and further analysis of this locus may lead to the identification of a gene the product of which regulates platelet and leukocyte morphology.  相似文献   

13.
Band 3, the major transmembrane protein of erythrocytes, mediates the exchange of anions across the membrane and anchors the erythroid membrane skeleton. Proteins immunologically related to Band 3 have been detected in a variety of nonerythroid cells. We have isolated a human cDNA clone that encodes a protein related to but distinct from the erythroid form of Band 3, based on the comparison of the amino acid sequence for the two proteins. The presence of the gene for the Band 3-like protein in a panel of mouse-human somatic cell hybrids containing subsets of human chromosomes correlated with the presence of human chromosome 7. In situ hybridization analysis using the c-DNA for this nonerythroid Band 3 gene further localized the gene to region 7q35----7q36 of human metaphase chromosomes.  相似文献   

14.
Exon trapping was used to identify fragments of genes on human chromosome 21. One trapped sequence, hmc18h10 (GenBank no. X88329), showed homology to a sequence (GenBank no. S65225) that includes the first three codons of the rat PEP-19 gene and 5′ untranslated leader region. We have cloned the corresponding cDNA for a human homolog of the rat PEP-19 gene and mapped it to the region between markers ERG and D21S56 of chromosome 21q22.2–q22.3. Rat PEP-19 is a neuron-specific polypeptide expressed in several regions of the central nervous system. It serves as a cell-specific marker in Purkinje cells and its expression is developmentally regulated in the cerebellum, but its precise function is unknown. It is also presently unknown whether overexpression of the PEP-19 gene is involved in certain phenotypes of Down syndrome. Received: 3 May 1996 / Revised: 2 July 1996  相似文献   

15.
A highly malignant human T-cell receptor (TCR) gamma/delta+ T-cell leukemia was shown to have a productive rearrangement of the TCR delta locus on one chromosome 14 and a novel t(8;14)(q24;q11) rearrangement involving the J delta 1 gene segment on the other chromosome 14. Chromosome walking coupled with pulsed-field gel electrophoretic (PFGE) analysis determined that the TCR J delta 1 gene fragment of the involved chromosome was relocated approximately 280 kb downstream of the c-myc proto-oncogene locus found on chromosome band 8q24. This rearrangement was reminiscent of the Burkitt's lymphoma variants that translocate to a region identified as the pvt-1 locus. Sequence comparison of the breakpoint junctions of interchromosomal rearrangements in T-cell leukemias involving the TCR delta-chain locus revealed novel signal-like sequence motifs, GCAGA(A/T)C and CCCA(C/G)GAC. These sequences were found on chromosome 8 at the 5' flanking site of the breakpoint junction of chromosome 8 in the TCR gamma/delta leukemic cells reported here and also on chromosome 1 in T-cell acute lymphocytic leukemia patients carrying the t(1;14)(p32;q11) rearrangement. These results suggest that (i) during early stages of gamma delta T-cell ontogeny, the region 280 kb 3' of the c-myc proto-oncogene on chromosome 8 is fragile and accessible to the lymphoid recombination machinery and (ii) rearrangements to both 8q24 and 1p32 may be governed by novel sequence motifs and be subject to common enzymatic mechanisms.  相似文献   

16.
Loss of heterozygosity (LOH) on chromosome 9q is the most frequent genetic alteration in transitional cell carcinoma (TCC) of the bladder, indicating the presence of one or more relevant tumor suppressor genes. We previously mapped one of these putative tumor suppressor loci to 9q32–q33 and localized the candidate region within a single YAC 840 kb in size. This locus has been designatedDBC1(for deleted in bladder cancer gene 1). We have identified a novel gene,DBCCR1,in this candidate region by searching for expressed sequence tags (ESTs) that map to YACs spanning the region. Database searching using the entireDBCCR1cDNA sequence identified several human ESTs and a few homologous mouse ESTs. However, the predicted 761-amino-acid sequence had no significant homology to known protein sequences. Mutation analysis of the coding region and Southern blot analysis detected neither somatic mutations nor gross genetic alterations in primary TCCs. AlthoughDBCCR1was expressed in multiple normal human tissues including urothelium, mRNA expression was absent in 5 of 10 (50%) bladder cancer cell lines. Methylation analysis of the CpG island at the 5′ region of the gene and the induction ofde novoexpression by a demethylating agent indicated that this island might be a frequent target for hypermethylation and that hypermethylation-based silencing of the gene occurs in TCC. These findings makeDBCCR1a good candidate forDBC1.  相似文献   

17.
为克隆位于多发性骨髓瘤(multiple myeloma,MM)患者染色体13q14.2~13q21.1区域候选抑瘤基因,通过生物信息学分析获取疾病基因定位区域内代表新基因的ESTs,并运用半定量RT-PCR检测它们在正常人与MM患者骨髓组织中的表达水平,发现一条在MM患者骨髓组织中明显表达下调的EST(GenBank收录号:H86826).Northern印迹杂交显示H86826在骨髓组织中转录本大小为1.5kb.通过购买商品化克隆IM-AGE223589测序获得了H86826所代表的基因的1491 bp全长cDNA序列(GenBank收录号:AY368652),人类基因组命名委员会将其命名为MYETS1(myeloma tumor suppressor 1).生物信息学分析其为一个编码分子质量为15.1 kD、等电点为6.13的135个氨基酸的新基因.该基因的功能正在进一步的研究之中.  相似文献   

18.
19.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2–10/10,000 individuals. Chromosome 15q11–q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the γ-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11–q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11–q13.  相似文献   

20.

Background

Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is an autosomal dominant eye movement disorder linked to the pericentromere of chromosome 12 (12p11.2 - q12). Sarcospan is a member of the dystrophin associated protein complex in skeletal and extraocular muscle and maps to human chromosome 12p11.2. Mutations in the genes encoding each of the other components of the skeletal muscle sarcospan-sarcoglycan complex (α - δ sarcoglycan) have been shown to cause limb girdle muscular dystrophy (LGMD2C-F). To determine whether mutations in the sarcospan gene are responsible for CFEOM1 we: (1) attempted to map sarcospan to the CFEOM1 critical region; (2) developed a genomic primer set to directly sequence the sarcospan gene in CFEOM1 patients; and (3) generated an anti-sarcospan antibody to examine extraocular muscle biopsies from CFEOM1 patients.

Results

When tested by polymerase chain reaction, sarcospan sequence was not detected on yeast or bacterial artificial chromosomes from the CFEOM1 critical region. Sequencing of the sarcospan gene in CFEOM1 patients from 6 families revealed no mutations. Immunohistochemical studies of CFEOM1 extraocular muscles showed normal levels of sarcospan at the membrane. Finally, sarcospan was electronically mapped to bacterial artificial chromosomes that are considered to be outside of the CFEOM1 critical region.

Conclusions

In this report we evaluate sarcospan as a candidate gene for CFEOM1. We have found that it is highly unlikely that sarcospan is involved in the pathogenesis of this disease. As of yet no sarcospan gene mutations have been found to cause muscular abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号