首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An in vitro bioassay has been developed to explore the role of the pollen coating in the pollen/stigma interaction in Brassica oleracea . In the assay, coating is removed from pollen grains, supplemented with protein fractions isolated from coatings of different S (self incompatibility) haplotypes, and then—using micromanipulation—interposed between individual pollen grains and the stigmatic surface. Normally, the coating used is of the same haplotype as the pollen in the experiment—thus constituting an 'extension' of its own coat—but carrying the supplemented protein fractions. Initial experiments confirmed preliminary data that the pollen coating contained the male determinant of self incompatibility (SI); not only did the addition of 'self' coating (i.e. that with the same S -haplotype as the stigma) prevent the success of a compatible cross pollination, but a 'cross' coating (i.e. that with a different S -haplotype from the stigma) could induce the germination and growth of self pollen. Protein supplementation experiments demonstrated that the pollen-held determinant is contained within the water soluble component of the pollen coat, while further analysis revealed that the active molecular species possesses an Mr10 kDa. More extensive fractionation by gel filtration and reverse phase HPLC was used to isolate a family of basic, cysteine-rich proteins (PCP-A: P ollen C oat P roteins-class A)—one of which is known to bind to stigmatically-expressed components of the S -locus in Brassica . Introduction of the PCP-A protein fraction into the bioassay confirmed the male determinant of SI as a protein, and probably a member of the PCP-A protein family.  相似文献   

2.
Evolutionary dynamics of self-incompatibility alleles in Brassica   总被引:2,自引:0,他引:2  
Uyenoyama MK 《Genetics》2000,156(1):351-359
Self-incompatibility in Brassica entails the rejection of pollen grains that express specificities held in common with the seed parent. In Brassica, pollen specificity is encoded at the multipartite S-locus, a complex region comprising many expressed genes. A number of species within the Brassicaceae express sporophytic self-incompatibility, under which individual pollen grains bear specificities determined by one or both S-haplotypes of the pollen parent. Classical genetic and nucleotide-level analyses of the S-locus have revealed a dichotomy in sequence and function among S-haplotypes; in particular, all class I haplotypes show dominance over all class II haplotypes in determination of pollen specificity. Analysis of an evolutionary model that explicitly incorporates features of the Brassica system, including the class dichotomy, indicates that class II haplotypes may invade populations at lower rates and decline to extinction at higher rates than class I haplotypes. This analysis suggests convergence to an evolutionarily persistent state characterized by the maintenance in high frequency of a single class II haplotype together with many class I haplotypes, each in low frequency. This expectation appears to be consistent with empirical observations of high frequencies of relatively few distinct recessive haplotypes.  相似文献   

3.
Self-incompatibility (SI) prevents self-fertilization by rejecting pollen from plants with the same S phenotype. The Brassica SI system is controlled sporophytically by multiple alleles at the single locus, S, and dominance relationships among S haplotypes are observed in both stigma and pollen. We have identified previously five different class-II S haplotypes in Brassica campestris. Here, we performed test-crosses between S heterozygotes and their respective parental S homozygotes for four of these class-II S haplotypes, and observed a linear dominance relationship on the pollen side. To determine how this relationship is controlled, we performed RNA gel blot analyses for six S heterozygotes and their respective parental S homozygotes using the corresponding SP11 clone as a probe. In all six S heterozygotes, SP11 derived from a dominant haplotype was predominantly expressed, and SP11 derived from a recessive haplotype was repressed. Thus, the linear dominance relationship of the SI phenotype on the pollen side is regulated by the expression of SP11.  相似文献   

4.
Mable BK  Beland J  Di Berardo C 《Heredity》2004,93(5):476-486
Natural populations of diploid Arabidopsis lyrata exhibit the sporophytic type of self-incompatibility system characteristic of Brassicaceae, in which complicated dominance interactions among alleles in the diploid parent determine self-recognition phenotypes of both pollen and stigma. The purpose of this study was to investigate how polyploidy affects this already complex system. One tetraploid population (Arabidopsis lyrata ssp kawasakiana from Japan) showed complete self-compatibility and produced viable selfed progeny for at least three generations subsequent to field collection. In contrast, individuals from a second tetraploid population (A. lyrata ssp petraea from Austria) were strongly self-incompatible (SI). Segregation of SI genotypes in this population followed Mendelian patterns based on a tetrasomic model of inheritance, with two to four alleles per individual, independent segregation of alleles, and little evidence of dosage effects of alleles found in multiple copies. Similar to results from diploids, anomalous compatibility patterns involving particular combinations of individuals occurred at a low frequency in the tetraploids, suggesting altered dominance in certain genetic backgrounds that could be due to the influence of a modifier locus. Overall, dominance relationships among S-alleles in self-incompatible tetraploid families were remarkably similar to those in related diploids, suggesting that this very important and complicated locus has not undergone extensive modification subsequent to polyploidization.  相似文献   

5.
6.
7.
Summary Several seedlings of Nemesia strumosa with various levels of pseudo-self-compatibility (PSC) often produced more seed after self pollination than when pollinated using pollen from incompatible plants bearing the same S alleles. Sporophytic recognition of self pollen apparently increases PSC levels above those attributable to modifying genes which interfere with normal stylar activity.Scientific Journal Series Paper Number 9546 of the Minnesota Agricultural Experiment Station.  相似文献   

8.
The self-incompatibility system in Brassica is controlled by the S-locus, which contains S-receptor kinase (SRK) and S-locus protein 11 (SP11). SRK and SP11 control stigma and pollen S-haplotype specificity, respectively. SP11 binding to SRK induces the autophosphorylation of SRK, which triggers the signaling cascade that results in the rejection of self-pollen. The localization of SP11 protein during pollen development and pollination, however, have never been demonstrated. In this study, we examined the localization of S(8)-SP11 protein in the anther or pollinated stigma by immuno-electron microscopy. The immunostaining suggested that S(8)-SP11 was secreted from the tapetal cell into the anther locule as a cluster and translocated to the pollen surface at the early developmental stage of the anther. During the pollination process, SP11 was translocated from the pollen surface to the papilla cell, and then penetrated the cuticle layer of the papilla cell to diffuse across the pectin cellulose layer. Furthermore, SP11 protein could only penetrate the cuticle layer of the papilla cell in the presence of pollen grains, and could not penetrate on its own. This suggests that another factor from the pollen grain is needed for SP11 protein to penetrate the papilla cell wall.  相似文献   

9.
Many flowering plants have evolved self-incompatibility (SI) systems to prevent inbreeding. In the Brassicaceae, SI is genetically controlled by a single polymorphic locus, termed the S-locus. Pollen rejection occurs when stigma and pollen share the same S-haplotype. Recognition of S-haplotype specificity has recently been shown to involve at least two S-locus genes, S-receptor kinase (SRK) and S-locus protein 11 or S-locus Cys-rich (SP11/SCR). SRK encodes a polymorphic membrane-spanning protein kinase, which is the sole female determinant of the S-haplotype specificity. SP11/SCR encodes a highly polymorphic Cys-rich small basic protein specifically expressed in the anther tapetum and in pollen. In cauliflower (B. oleracea), the gain-of-function approach has demonstrated that an allele of SP11/SCR encodes the male determinant of S-specificity. Here we examined the function of two alleles of SP11/SCR of B. rapa by the same approach and further established that SP11/SCR is the sole male determinant of SI in the genus Brassica sp. Our results also suggested that the 522-bp 5'-upstream region of the S9-SP11 gene used to drive the transgene contained all the regulatory elements required for the unique sporophytic/gametophytic expression observed for the native SP11 gene. Promoter deletion analyses suggested that the highly conserved 192-bp upstream region was sufficient for driving this unique expression. Furthermore, immunohistochemical analyses revealed that the protein product of the SP11 transgene was present in the tapetum and pollen, and that in pollen of late developmental stages, the SP11 protein was mainly localized in the pollen coat, a finding consistent with its expected biological role.  相似文献   

10.
The yeast PDC1 gene coding for the fermentative enzyme pyruvate decarboxylase was isolated. This DNA sequence was used to identify the corresponding messenger RNA by hybridization. It could be shown that the synthesis of pyruvate decarboxylase is efficiently regulated by variations in the amount of PDC1 mRNA. Very low levels of PDC1 mRNA were found in cells growing in a medium containing ethanol. Glucose addition to these cells leads to a rapid accumulation of PDC1 mRNA. The PDC1 mRNA levels found in different mutants and in cells growing in media containing carbon sources other than glucose or ethanol suggest that the amount of PDC1 mRNA in yeast cells is affected by a number of different factors.  相似文献   

11.
12.
13.
14.
S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8?cM corresponding to ~364?Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus?×?domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.  相似文献   

15.
16.
In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region several closely linked genes have been identified. One of them, S-locus receptor kinase (SRK), determines S haplotype specificity of the stigma and it's the key protein for SI reaction. The role of the S locus glycoprotein (SLG) gene remains unclear. In the last decade approximately 15 additional genes linked to S-locus have been found. Recently, a gene has been identified (SCR) that encodes a small cysteine-rich protein which is a candidate for the pollen ligand. In addition to S locus linked genes there are unlinked SLRgenes (S-locus related genes). In this review, we discuss the role of these genes and the current view on the self-incompatibility mechanism in Brassica.  相似文献   

17.
To precisely define the functional sequence of the CHO1 gene from Saccharomyces cerevisiae, encoding the regulated membrane-associated enzyme phosphatidylserine synthase (PSS), we subcloned the original 4.5-kilobase (kb) CHO1 clone. In this report a 2.8-kb subclone was shown to complement the ethanolamine-choline auxotrophy and to repair the defect in the synthesis of phosphatidylserine, both of which are characteristic of cho1 mutants. When this subclone was used as a hybridization probe of Northern and slot blots of RNA from wild-type cells, the abundance of a 1.2-kb RNA changed in response to alterations in the levels of the soluble phospholipid precursors inositol and choline. The addition of inositol led to a 40% repression of the 1.2-kb RNA level, while the addition of choline and inositol led to an 85% repression. Choline alone had little repressive effect. The level of 1.2-kb RNA closely paralleled the level of PSS activity found in the same cells as determined by enzyme assays. Disruption of the CHO1 gene resulted in the simultaneous disappearance of 1.2-kb RNA and PSS activity. Cells bearing the ino2 or ino4 regulatory mutations, which exhibit constitutively repressed levels of a number of phospholipid biosynthetic enzymes, had constitutively repressed levels of 1.2-kb RNA and PSS activity. Another regulatory mutation, opi1, which causes the constitutive derepression of PSS and other phospholipid biosynthetic enzymes, caused the constitutive derepression of the 1.2-kb RNA. When cho1 mutant cells were transformed with the 2.8-kb subclone on a single-copy plasmid, the 1.2-kb RNA and PSS activity levels were regulated in a wild-type fashion. The presence of the 2.8-kb subclone on a multicopy plasmid, however, led to the constitutive overproduction of 1.2-kb RNA and PSS in cho1 cells.  相似文献   

18.
In Brassica, the S-locus glycoprotein (SLG) gene has been strongly implicated in the self-incompatibility reaction. Several alleles of this locus have been sequenced, and accordingly grouped as class I (corresponding to dominant S-alleles) and class II (recessive). We recently showed that a self-compatible (Sc) line of Brassica oleracea expressed a class II-like SLG (SLG-Sc) gene. Here, we report that the SLG-Sc glycoprotein is electrophoretically and immunochemically very similar to the recessive SLG-S15 glycoprotein, and is similarly expressed in stigmatic papillae. Moreover, by seed yield analysis, we observe that both alleles are associated with a self-compatibility response, in contrast with the other known recessive S haplotypes (S2 and S5). By genomic DNA blot analysis, we show the existence of molecular homologies between the Sc and S15 haplotypes, but demonstrate that they are not identical. On the other hand, we also report that the S2 haplotype expresses very low amounts of SLG glycoproteins, although it exhibits a self-incompatible phenotype. These results strongly question the precise role of the SLG gene in the molecular mechanisms that control the self-incompatibility reaction of Brassica.  相似文献   

19.
The synthesis of many mammalian proteins associated with the translational apparatus is selectively regulated by mitogenic and nutritional stimuli, at the translational level. The apparent advantages of the regulation of gene expression at the translational level are the speed and the readily reversible nature of the response to altering physiological conditions. These two features enable cells to rapidly repress the biosynthesis of the translational machinery upon shortage of amino acids or growth arrest, thus rapidly blocking unnecessary energy wastage. Likewise, when amino acids are replenished or mitogenic stimulation is applied, then cells can rapidly respond in resuming the costly biosynthesis of the translational apparatus. A structural hallmark, common to mRNAs encoding many components of the translational machinery, is the presence of a 5' terminal oligopyrimidine tract (5'TOP), referred to as TOP mRNAs. This structural motif comprises the core of the translational cis-regulatory element of these mRNAs. The present review focuses on the mechanism underlying the translational control of TOP mRNAs upon growth and nutritional stimuli. A special emphasis is put on the pivotal role played by ribosomal protein S6 kinase (S6K) in this mode of regulation, and the upstream regulatory pathways, which might be engaged in transducing external signals into activation of S6K. Finally, the possible involvement of pyrimidine-binding proteins in the translational control of TOP mRNAs is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号