首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Phyletic patterns denote the presence and absence of orthologous genes in completely sequenced genomes and are used to infer functional links between genes, on the assumption that genes involved in the same pathway or functional system are co-inherited by the same set of genomes. However, this basic premise has not been quantitatively tested, and the limits of applicability of the phyletic-pattern method remain unknown.

Results

We characterized a hierarchy of 3,688 phyletic patterns encompassing more than 5,000 known protein-coding genes from 66 complete microbial genomes, using different distances, clustering algorithms, and measures of cluster quality. The most sensitive set of parameters recovered 223 clusters, each consisting of genes that belong to the same metabolic pathway or functional system. Fifty-six clusters included unexpected genes with plausible functional links to the rest of the cluster. Only a small percentage of known pathways and multiprotein complexes are co-inherited as one cluster; most are split into many clusters, indicating that gene loss and displacement has occurred in the evolution of most pathways.

Conclusions

Phyletic patterns of functionally linked genes are perturbed by differential gains, losses and displacements of orthologous genes in different species, reflecting the high plasticity of microbial genomes. Groups of genes that are co-inherited can, however, be recovered by hierarchical clustering, and may represent elementary functional modules of cellular metabolism. The phyletic patterns approach alone can confidently predict the functional linkages for about 24% of the entire data set.  相似文献   

2.

Background  

It has been shown in a variety of organisms, including mammals, that genes that appeared recently in evolution, for example orphan genes, evolve faster than older genes. Low functional constraints at the time of origin of novel genes may explain these results. However, this observation has been recently attributed to an artifact caused by the inability of Blast to detect the fastest genes in different eukaryotic genomes. Distinguishing between these two possible explanations would be of great importance for any studies dealing with the taxon distribution of proteins and the origin of novel genes.  相似文献   

3.
4.

Background

Bacterial genomes develop new mechanisms to tide them over the imposing conditions they encounter during the course of their evolution. Acquisition of new genes by lateral gene transfer may be one of the dominant ways of adaptation in bacterial genome evolution. Lateral gene transfer provides the bacterial genome with a new set of genes that help it to explore and adapt to new ecological niches.

Methods

A maximum likelihood analysis was done on the five sequenced corynebacterial genomes to model the rates of gene insertions/deletions at various depths of the phylogeny.

Results

The study shows that most of the laterally acquired genes are transient and the inferred rates of gene movement are higher on the external branches of the phylogeny and decrease as the phylogenetic depth increases. The newly acquired genes are under relaxed selection and evolve faster than their older counterparts. Analysis of some of the functionally characterised LGTs in each species has indicated that they may have a possible adaptive role.

Conclusion

The five Corynebacterial genomes sequenced to date have evolved by acquiring between 8 – 14% of their genomes by LGT and some of these genes may have a role in adaptation.
  相似文献   

5.

Background  

Genome context methods have been introduced in the last decade as automatic methods to predict functional relatedness between genes in a target genome using the patterns of existence and relative locations of the homologs of those genes in a set of reference genomes. Much work has been done in the application of these methods to different bioinformatics tasks, but few papers present a systematic study of the methods and their combination necessary for their optimal use.  相似文献   

6.

Background

The correct taxonomic assignment of bacterial genomes is a primary and challenging task. With the availability of whole genome sequences, the gene content based approaches appear promising in inferring the bacterial taxonomy. The complete genome sequencing of a bacterial genome often reveals a substantial number of unique genes present only in that genome which can be used for its taxonomic classification.

Results

In this study, we have proposed a comprehensive method which uses the taxon-specific genes for the correct taxonomic assignment of existing and new bacterial genomes. The taxon-specific genes identified at each taxonomic rank have been successfully used for the taxonomic classification of 2,342 genomes present in the NCBI genomes, 36 newly sequenced genomes, and 17 genomes for which the complete taxonomy is not yet known. This approach has been implemented for the development of a tool ‘Microtaxi’ which can be used for the taxonomic assignment of complete bacterial genomes.

Conclusion

The taxon-specific gene based approach provides an alternate valuable methodology to carry out the taxonomic classification of newly sequenced or existing bacterial genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1542-0) contains supplementary material, which is available to authorized users.  相似文献   

7.
Classification and nomenclature of all human homeobox genes   总被引:2,自引:0,他引:2  

Background

The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.

Results

We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.

Conclusion

We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.  相似文献   

8.

Background  

Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes.  相似文献   

9.

Background  

All sequenced genomes contain a proportion of lineage-specific genes, which exhibit no sequence similarity to any genes outside the lineage. Despite their prevalence, the origins and functions of most lineage-specific genes remain largely unknown. As more genomes are sequenced opportunities for understanding evolutionary origins and functions of lineage-specific genes are increasing.  相似文献   

10.

Background

In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis.

Results

We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership.

Conclusions

The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-308) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

The physical organization and chromosomal localization of genes within genomes is known to play an important role in their function. Most genes arise by duplication and move along the genome by random shuffling of DNA segments. Higher order structuring of the genome occurs in eukaryotes, where groups of physically linked genes are co-expressed. However, the contribution of gene duplication to gene order has not been analyzed in detail, as it is believed that co-expression due to recent duplicates would obscure other domains of co-expression.

Results

We have catalogued ordered duplicated genes in Drosophila melanogaster, and found that one in five of all genes is organized as tandem arrays. Furthermore, among arrays that have been spatially conserved over longer periods than would be expected on the basis of random shuffling, a disproportionate number contain genes encoding developmental regulators. Using in situ gene expression data for more than half of the Drosophila genome, we find that genes in these conserved clusters are co-expressed to a much higher extent than other duplicated genes.

Conclusions

These results reveal the existence of functional constraints in insects that retain copies of genes encoding developmental and regulatory proteins as neighbors, allowing their co-expression. This co-expression may be the result of shared cis-regulatory elements or a shared need for a specific chromatin structure. Our results highlight the association between genome architecture and the gene regulatory networks involved in the construction of the body plan.  相似文献   

12.

Background

Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism.

Results

We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events.

Conclusions

Overall, we describe a complex web formed by evolutionary relationships of bacterial carbohydrate metabolism genes, manifested as co-localization patterns.

Reviewers

This article was reviewed by Daria V. Dibrova (A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia), nominated by Armen Mulkidjanian (University of Osnabrück, Germany), Igor Rogozin (NCBI, NLM, NIH, USA) and Yuri Wolf (NCBI, NLM, NIH, USA).
  相似文献   

13.
14.

Background

Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains.

Results

Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices.

Conclusion

A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1120) contains supplementary material, which is available to authorized users.  相似文献   

15.
VY Muley  A Ranjan 《PloS one》2012,7(7):e42057

Background

Recent progress in computational methods for predicting physical and functional protein-protein interactions has provided new insights into the complexity of biological processes. Most of these methods assume that functionally interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive performance analyses of these methods have been frequently reported in literature. However, very few studies provide insight into the effect of reference genome selection on detection of meaningful protein interactions.

Methods

We analyzed the performance of four methods and their variants to understand the effect of reference genome selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction methods.

Conclusions

Higher performance for predicting protein-protein interactions was achievable even with 100–150 bacterial genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the large number of available genomes. Moreover, such a sampling allows for selecting 50–100 genomes for comparable accuracy of predictions when computational resources are limited.  相似文献   

16.

Background

Single copy genes are common across angiosperm genomes. With the sufficiently high quality sequenced genomes, the identification of large-scale single copy genes among multiple species is possible. Although some characteristics have been reported, our study provides novel insights into single copy genes.

Results

We identified single copy genes across 29 angiosperm genomes. A significant negative correlation was found between the number of duplicate blocks and the number of single copy genes. We found that a considerable number of single copy genes are located in organelles, showing a preference for binding and catalytic activity. The analysis of effective number of codons (Nc) illustrates that single copy genes have a stronger codon bias than non-single copy genes in eudicots. The relative high expression level of single copy genes was partially confirmed by the RNA-seq data, rather than the Codon Adaptation Index (CAI). Unlike in most other species, a strongly negatively correlation occurs between Nc and GC3 among single copy genes in grass genomes. When compared to all non-single copy genes, single copy genes indicate more conservation (as indicated by Ka and Ks values). But our alternative splicing (AS) results reveal that selective constraints are weaker in single copy genes than in low copy family genes (1–10 in-paralogs) and stronger than high copy family genes (>10 in-paralogs). Using concatenated shared single copy genes, we obtained a well-resolved phylogenetic tree. With the addition of intron sequences, the branch support is improved, but striking incongruences are also evident. Therefore, it is noteworthy that inclusion of intron sequences seems more appropriate for the phylogenetic reconstruction at lower taxonomic levels.

Conclusions

Our analysis provides insight into the evolutionary characteristics of single copy genes across 29 angiosperm genomes. The results suggest that there are key differences in evolutionary constraints between single copy genes and non-single copy genes. And to some extent, these evolutionary constraints show some species-specific differences, especially between eudicots and monocots. Our preliminary evidence also suggests that the concatenated shared single copy genes are well suited for use in resolving phylogenetic relationships.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-504) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background  

Protein-coding gene detection in prokaryotic genomes is considered a much simpler problem than in intron-containing eukaryotic genomes. However there have been reports that prokaryotic gene finder programs have problems with small genes (either over-predicting or under-predicting). Therefore the question arises as to whether current genome annotations have systematically missing, small genes.  相似文献   

18.

Background  

Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving.  相似文献   

19.

Background  

It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed genes in microbial genomes. We compare these predictions with those based on codon adaptation index (CAI) values, and also with experimental data for 6 different microbial genomes, with a particular interest in experimental data from Escherichia coli. Moreover, position preference is examined further in 328 sequenced microbial genomes.  相似文献   

20.
Horizontal Gene Transfer (HGT) events, initially thought to be rare in Mycobacterium tuberculosis, have recently been shown to be involved in the acquisition of virulence operons in M. tuberculosis. We have developed a new partitioning framework based HGT prediction algorithm, called Grid3M, and applied the same for the prediction of HGTs in Mycobacteria. Validation and testing using simulated and real microbial genomes indicated better performance of Grid3M as compared with other widely used HGT prediction methods. Specific analysis of the genes belonging to dormancy/reactivation regulons across 14 mycobacterial genomes indicated that horizontal acquisition is specifically restricted to important accessory proteins. The results also revealed Burkholderia species to be a probable source of HGT genes belonging to these regulons. The current study provides a basis for similar analyses investigating the functional/evolutionary aspects of HGT genes in other pathogens. A database of Grid3M predicted HGTs in completely sequenced genomes is available at https://metagenomics.atc.tcs.com/Grid3M/ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号