首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse DNA (cytosine-5) methyltransferases Dnmt3a and Dnmt3b are expected to be de novo-type DNA methyltransferases. In the present study, we found that exogenously expressed mouse Dnmt3a or Dnmt3b induced abnormal cell clusters at the gastrulation stage in Xenopus embryos. The abnormal cells were judged to be apoptotic from the positive staining with the TdT dUTP nucleotide end-labeling method and the rescue by hBcl-x(L), a Bcl-2 homologue. On the other hand, neither bacterial DNA (cytosine-5) methyltransferase nor Dnmt3b3, one of the three isoforms of Dnmt3b that has no DNA methylation activity, induced apoptosis. In addition, mutant Dnmt3a and the other two Dnmt3b isoforms, Dnmt3b1 and Dnmt3b2, which have no DNA methylation activity due to a change of the cysteine residue in the catalytic center to an alanine residue, retained the ability to induce apoptosis. This indicates that the apoptosis was not induced by DNA methylation activity. The domain of Dnmt3b1 (3b2) responsible for the apoptosis is the catalytic domain in the carboxyl-terminal half.  相似文献   

2.
Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.  相似文献   

3.
4.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. De novo type DNA methyltransferases Dnmt3a and Dnmt3b are responsible for creating DNA methylation patterns during embryogenesis and in germ cells. Although their in vitro DNA methylation properties are similar, Dnmt3a and Dnmt3b methylate different genomic DNA regions in vivo. In the present study, we have examined the DNA methylation activity of Dnmt3a and Dnmt3b towards nucleosomes reconstituted from recombinant histones and DNAs, and compared it to that of the corresponding naked DNAs. Dnmt3a showed higher DNA methylation activity than Dnmt3b towards naked DNA and the naked part of nucleosomal DNA. On the other hand, Dnmt3a scarcely methylated the DNA within the nucleosome core region, while Dnmt3b significantly did, although the activity was low. We propose that the preferential DNA methylation activity of Dnmt3a towards the naked part of nucleosomal DNA and the significant methylation activity of Dnmt3b towards the nucleosome core region contribute to their distinct methylation of genomic DNA in vivo.  相似文献   

5.
Dnmt2 is the most strongly conserved cytosine DNA methyltransferase in eukaryotes. It has been found in all organisms possessing methyltransferases of the Dnmt1 and Dnmt3 families, whereas in many others Dnmt2 is the sole cytosine DNA methyltransferase. The Dnmt2 molecule contains all conserved motifs of cytosine DNA methyltransferases. It forms 3D complexes with DNA very similar to those of bacterial DNA methyltransferases and performs cytosine methylation by a catalytic mechanism common to all cytosine DNA methyltransferases. Catalytic activity of the purified Dnmt2 with DNA substrates is very low and could hardly be detected in direct biochemical assays. Dnmt2 is the sole cytosine DNA methyltransferase in Drosophila and other dipteran insects. Its overexpression as a transgene leads to DNA hypermethylation in all sequence contexts and to an extended life span. On the contrary, a null-mutation of the Dnmt2 gene leads to a diminished life span, though no evident anomalies in development are observed. Dnmt2 is also the sole cytosine DNA methyltransferase in several protists. Similar to Drosophila these protists have a very low level of DNA methylation. Some limited genome compartments, such as transposable sequences, are probably the methylation targets in these organisms. Dnmt2 does not participate in genome methylation in mammals, but seems to be an RNA methyltransferase modifying the 38th cytosine residue in anticodon loop of certain tRNAs. This modification enhances stability of tRNAs, especially in stressful conditions. Dnmt2 is the only enzyme known to perform RNA methylation by a catalytic mechanism characteristic of DNA methyltransferases. The Dnmt2 activity has been shown in mice to be necessary for paramutation establishment, though the precise mechanisms of its participation in this form of epigenetic heredity are unknown. It seems likely, that either of the two Dnmt2 activities could become a predominant one during the evolution of different species. The high level of the Dnmt2 evolutionary conservation proves its activity to have a significant adaptive value in natural environment.  相似文献   

6.
7.
During gestation there is a high demand for the essential nutrient choline. Adult rats supplemented with choline during embryonic days (E) 11-17 have improved memory performance and do not exhibit age-related memory decline, whereas prenatally choline-deficient animals have memory deficits. Choline, via betaine, provides methyl groups for the production of S-adenosylmethionine, a substrate of DNA methyltransferases (DNMTs). We describe an apparently adaptive epigenomic response to varied gestational choline supply in rat fetal liver and brain. S-Adenosylmethionine levels increased in both organs of E17 fetuses whose mothers consumed a choline-supplemented diet. Surprisingly, global DNA methylation increased in choline-deficient animals, and this was accompanied by overexpression of Dnmt1 mRNA. Previous studies showed that the prenatal choline supply affects the expression of multiple genes, including insulin-like growth factor 2 (Igf2), whose expression is regulated in a DNA methylation-dependent manner. The differentially methylated region 2 of Igf2 was hypermethylated in the liver of E17 choline-deficient fetuses, and this as well as Igf2 mRNA levels correlated with the expression of Dnmt1 and with hypomethylation of a regulatory CpG within the Dnmt1 locus. Moreover, mRNA expression of brain and liver Dnmt3a and methyl CpG-binding domain 2 (Mbd2) protein as well as cerebral Dnmt3l was inversely correlated to the intake of choline. Thus, choline deficiency modulates fetal DNA methylation machinery in a complex fashion that includes hypomethylation of the regulatory CpGs within the Dnmt1 gene, leading to its overexpression and the resultant increased global and gene-specific (e.g. Igf2) DNA methylation. These epigenomic responses to gestational choline supply may initiate the long term developmental changes observed in rats exposed to varied choline intake in utero.  相似文献   

8.
In mammals, the resetting of DNA methylation patterns in early embryos and germ cells is crucial for development. Two DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the creation of DNA methylation patterns. Dnmt3L, a member of the Dnmt3 family, has been reported to be necessary for maternal methylation imprinting, possibly by interacting with Dnmt3a and/or Dnmt3b (Hata, K., Okano, M., Lei, H., and Li, E. (2002) Development 129, 1983-1993). In the present study, the effect of DNMT3L, a human homologue of Dnmt3L, on the DNA methylation activity of mouse Dnmt3a and Dnmt3b was examined in vitro. DNMT3L enhanced the DNA methylation activity of Dnmt3a and Dnmt3b about 1.5-3-fold in a dose-dependent manner but did not enhance the DNA methylation activity of Dnmt1. Although the extents of stimulation were different, a stimulatory effect on the DNA methylation activity was observed for all of the substrate DNA sequences examined, such as those of the maternally methylated SNRPN and Lit-1 imprinting genes, the paternally methylated H19 imprinting gene, the CpG island of the myoD gene, the 5 S ribosomal RNA gene, an artificial 28-bp DNA, poly(dG-dC)-poly(dG-dC), and poly(dI-dC)-poly(dI-dC). DNMT3L could not bind to DNA but could bind to Dnmt3a and Dnmt3b, indicating that the stimulatory effect of DNMT3L on the DNA methylation activity may not be due to the guiding of Dnmt3a and Dnmt3b to the targeting DNA sequence but may comprise a direct effect on their catalytic activity. The carboxyl-terminal half of DNMT3L was found to be responsible for the enhancement of the enzyme activity.  相似文献   

9.
10.
11.
12.
刘泽军  江海宏 《生命科学》2002,14(3):141-143
DNA甲基化在基因调节和动物发育中起着重要作用。负责DNA甲基化作用的酶尔为DNA甲基转移酶(Dnmts)。到目前为止,在哺乳动物细胞中已经鉴定了三种DNA甲基转移酶基因家族,即Dnmt1、Dnmt2和Dnmt3。鉴定和研究DNA甲基转移酶对阐明DNA甲基化机制起着关键的作用。  相似文献   

13.
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.  相似文献   

14.
M Okano  D W Bell  D A Haber  E Li 《Cell》1999,99(3):247-257
The establishment of DNA methylation patterns requires de novo methylation that occurs predominantly during early development and gametogenesis in mice. Here we demonstrate that two recently identified DNA methyltransferases, Dnmt3a and Dnmt3b, are essential for de novo methylation and for mouse development. Inactivation of both genes by gene targeting blocks de novo methylation in ES cells and early embryos, but it has no effect on maintenance of imprinted methylation patterns. Dnmt3a and Dnmt3b also exhibit nonoverlapping functions in development, with Dnmt3b specifically required for methylation of centromeric minor satellite repeats. Mutations of human DNMT3B are found in ICF syndrome, a developmental defect characterized by hypomethylation of pericentromeric repeats. Our results indicate that both Dnmt3a and Dnmt3b function as de novo methyltransferases that play important roles in normal development and disease.  相似文献   

15.
16.
We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or “maintenance,” of DNA methylation patterns. Inactivation of both Dnmt3a and Dnmt3b in embryonic stem (ES) cells results in progressive loss of methylation in various repeats and single-copy genes. Interestingly, introduction of the Dnmt3a, Dnmt3a2, and Dnmt3b1 isoforms back into highly demethylated mutant ES cells restores genomic methylation patterns; these isoforms appear to have both common and distinct DNA targets, but they all fail to restore the maternal methylation imprints. In contrast, overexpression of Dnmt1 and Dnmt3b3 failed to restore DNA methylation patterns due to their inability to catalyze de novo methylation in vivo. We also show that hypermethylation of genomic DNA by Dnmt3a and Dnmt3b is necessary for ES cells to form teratomas in nude mice. These results indicate that genomic methylation patterns are determined partly through differential expression of different Dnmt3a and Dnmt3b isoforms.  相似文献   

17.
A Dnmt2-like protein mediates DNA methylation in Drosophila   总被引:9,自引:0,他引:9  
The methylation status of Drosophila DNA has been discussed controversially over a long time. Recent evidence has provided strong support for the existence of 5-methylcytosine in DNA preparations from embryonic stages of fly development. The Drosophila genome contains a single candidate DNA methyltransferase gene that has been termed Dnmt2. This gene belongs to a widely conserved family of putative DNA methyltransferases. However, no catalytic activity has been demonstrated for any Dnmt2-like protein yet. We have now established a protocol for the immunological detection of methylated cytosine in fly embryos. Confocal analysis of immunostained embryos provided direct evidence for the methylation of embryonic DNA. In order to analyse the function of Dnmt2 in DNA methylation, we depleted the protein by RNA interference. Depletion of Dnmt2 had no detectable effect on embryonic development and resulted in a complete loss of DNA methylation. Consistently, overexpression of Dnmt2 from an inducible transgene resulted in significant genomic hypermethylation at CpT and CpA dinucleotides. These results demonstrate that Dnmt2 is both necessary and sufficient for DNA methylation in Drosophila and suggest a novel CpT/A-specific DNA methyltransferase activity for Dnmt2 proteins.  相似文献   

18.
19.
Dnmt1 is responsible for the maintenance DNA methylation during replication to propagate methylation patterns to the next generation. The replication foci targeting sequence (RFTS), which plugs the catalytic pocket, is necessary for recruitment of Dnmt1 to the replication site. In the present study we found that the DNA methylation activity of Dnmt1 was DNA length-dependent and scarcely methylated 12-bp short hemi-methylated DNA. Contrarily, the RFTS-deleted Dnmt1 and Dnmt1 mutants that destroyed the hydrogen bonds between the RFTS and catalytic domain showed significant DNA methylation activity even toward 12-bp hemi-methylated DNA. The DNA methylation activity of the RFTS-deleted Dnmt1 toward 12-bp hemi-methylated DNA was strongly inhibited on the addition of RFTS, but to a lesser extent by Dnmt1 harboring the mutations that impair the hydrogen bond formation. The SRA domain of Uhrf1, which is a prerequisite factor for maintenance methylation and selectively binds to hemi-methylated DNA, stimulated the DNA methylation activity of Dnmt1. The SRA to Dnmt1 concentration ratio was the determinant for the maximum stimulation. In addition, a mutant SRA, which had lost the DNA binding activity but was able to bind to Dnmt1, stimulated the DNA methylation activity of Dnmt1. The results indicate that the DNA methylation activity of Dnmt1 was stimulated on the direct interaction of the SRA and Dnmt1. The SRA facilitated acceptance of the 12-bp fluorocytosine-containing DNA by the catalytic center. We propose that the SRA removes the RFTS plug from the catalytic pocket to facilitate DNA acceptance by the catalytic center.  相似文献   

20.
Dnmt3a and Dnmt3b are paralogous enzymes responsible for de novo DNA methylation but with distinguished biological functions. In mice, disruption of Dnmt3b but not Dnmt3a causes global DNA hypomethylation, especially in repetitive sequences, which comprise the large majority of methylated DNA in the genome. By measuring DNA methylation activity of Dnmt3a and Dnmt3b homologues from five species, we found that mammalian Dnmt3b possessed significantly higher methylation activity on chromatin DNA than Dnmt3a and non-mammalian Dnmt3b. Sequence comparison and mutagenesis experiments identified a single amino acid substitution (I662N) in mammalian Dnmt3b as being crucial for its high chromatin DNA methylation activity. Further mechanistic studies demonstrated this substitution markedly enhanced the binding of Dnmt3b to nucleosomes and hence increased the chromatin DNA methylation activity. Moreover, this substitution was crucial for Dnmt3b to efficiently methylate repetitive sequences, which increased dramatically in mammalian genomes. Consistent with our observation that Dnmt3b evolved more rapidly than Dnmt3a during the emergence of mammals, these results demonstrated that the I662N substitution in mammalian Dnmt3b conferred enhanced chromatin DNA methylation activity and contributed to functional adaptation in the epigenetic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号