首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant disease resistance (R) genes encode proteins in which several motifs of the nucleotide-binding region (NBS) are highly conserved. Using degenerate primers designed according to the kinase 1 (P-loop) and hydrophobic (HD) motifs of the R gene NBS domains, homologous sequences were cloned from moss (Physcomitrella patens; phylum Bryophyta) representing an ancient nonvascular plant. A novel gene family (PpC) with at least eight homologous members was found. Expression of five members was detected. The level of expression was dependent on the developmental stage of moss, being higher in the gametophyte tissue than in the protonema tissue. The PpCs contained the conserved motifs characteristic of the NBS regions of R genes, and a kinase domain was found upstream from the NBS region. Phylogenetic analysis using the deduced NBS amino acid sequences of the PpCs and the plant genes available in databanks indicated that the PpCs show the closest relationship with the TIR-NBS class of R genes. No significant similarity to plant genes other than R genes was observed. These findings shed novel light on the evolutionary history of the R gene families, suggesting that the NBS region characteristic of the TIR-NBS class of R-like genes evolved prior to the evolutionary differentiation of vascular and nonvascular plants.  相似文献   

2.
The tomato Pto gene encodes a serine/threonine kinase (STK) whose molecular characterization has provided valuable insights into the disease resistance mechanism of tomato and it is considered as a promising candidate for engineering broad-spectrum pathogen resistance in this crop. In this study, a pair of degenerate primers based on conserved subdomains of plant STKs similar to the tomato Pto protein was used to amplify similar sequences in banana. A fragment of approximately 550 bp was amplified, cloned and sequenced. The sequence analysis of several clones revealed 13 distinct sequences highly similar to STKs. Based on their significant similarity with the tomato Pto protein (BLASTX E value <3e-53), seven of them were classified as Pto resistance gene candidates (Pto-RGCs). Multiple sequence alignment of the banana Pto-RGC products revealed that these sequences contain several conserved subdomains present in most STKs and also several conserved residues that are crucial for Pto function. Moreover, the phylogenetic analysis showed that the banana Pto-RGCs were clustered with Pto suggesting a common evolutionary origin with this R gene. The Pto-RGCs isolated in this study represent a valuable sequence resource that could assist in the development of disease resistance in banana.  相似文献   

3.
Degenerate oligonucleotide primers, designed based on conserved regions of several serine-threonine kinases (STK) previously cloned in tomato and Arabidopsis, were used to isolate STK candidates in wild and cultivated strawberries. Seven distinct classes of STKs were identified from three related wild species, i.e., Fragaria vesca, Fragaria chiloensis, and Potentilla tucumanensis, and seven different Fragaria x ananassa cultivars. Alignment of the deduced amino acid sequences and the Pto R protein from tomato revealed the presence of characteristic subdomains and conservation of the plant STK consensus and other residues that are crucial for Pto function. Based on identity scores and clustering in phylogenetic trees, five groups were recognized as Pto-like kinases. Strawberry Pto-like clones presented sequences that were clearly identified as the activation segments contained in the Pto, and some of them showed residues previously identified as being required for binding to AvrPto. Some of the non-Pto-like kinases presented a high degree of identity and grouped together with B-lectin receptor kinases that are also involved in disease resistance. Statistical studies carried out to evaluate departure from the neutral theory and nonsynonymous/synonymous substitutions suggest that the evolution of STK-encoding sequences in strawberries is subjected mainly to a purifying selection process. These results represent the first report of Pto-like STKs in strawberry.  相似文献   

4.
Rice Pti1a negatively regulates RAR1-dependent defense responses   总被引:2,自引:0,他引:2  
Tomato (Solanum lycopersicum) Pto encodes a protein kinase that confers resistance to bacterial speck disease. A second protein kinase, Pti1, physically interacts with Pto and is involved in Pto-mediated defense signaling. Pti1-related sequences are highly conserved among diverse plant species, including rice (Oryza sativa), but their functions are largely unknown. Here, we report the identification of a null mutant for the Pti1 homolog in rice and the functional characterization of Os Pti1a. The rice pti1a mutant was characterized by spontaneous necrotic lesions on leaves, which was accompanied by a series of defense responses and resistance against a compatible race of Magnaporthe grisea. Overexpression of Pti1a in rice reduced resistance against an incompatible race of the fungus recognized by a resistance (R) protein, Pish. Plants overexpressing Pti1a were also more susceptible to a compatible race of the bacterial pathogen Xanthomonas oryzae pv oryzae. These results suggest that Os Pti1a negatively regulates defense signaling for both R gene-mediated and basal resistance. We also demonstrated that repression of the rice RAR1 gene suppressed defense responses induced in the pti1a mutant, indicating that Pti1a negatively regulates RAR1-dependent defense responses. Expression of a tomato Pti1 cDNA in the rice pti1a mutant suppressed the mutant phenotypes. This contrasts strikingly with the previous finding that Sl Pti1 enhances Pto-mediated hypersensitive response (HR) induction when expressed in tobacco (Nicotiana tabacum), suggesting that the molecular switch controlling HR downstream of pathogen recognition has evolved differently in rice and tomato.  相似文献   

5.
Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.  相似文献   

6.
Degenerate primers, based on conserved subdomains of several plant serine/threonine kinases (STK) similar to the tomato Pto protein kinase, were designed to amplify similar regions from the common bean genome. Sequence analysis of the products defined five distinct classes sharing from 56.9 to 63.9% amino-acid identity with Pto. Inter-class identity ranged from 61.2 to 81.4%. Each of the five classes contain the conserved residues found in subdomains II through IX of most STKs. Multiple sequence and neighbor-joining tree analysis suggest the Pto and the cloned common bean sequences define a unique class of plant protein kinases. Southern hybridization to common bean DNA determined that the sequence classes represent low to moderate copy number families. Using PCR amplification with class-specific primers followed by restriction enzyme digestion of the products, these five classes were found to be essentially monomorphic among 20 divergent common bean genotypes. Each class was determined to be expressed in a leaf mRNA population. Further analysis of the Sg5 class using 3′-RACE (rapid amplification of cDNA ends) identified seven unique family members. All Sg5 3′-RACE products share a high degree of identity, but contain numerous differentiating features that demonstrate the presence of microheterogeneity within the Sg5 class. Three-dimensional homology modelling demonstrated that Pto and Sg5–3e contain nearly all of the structural features found in type α cyclic AMP-dependent protein kinase (cAPKα) except α-helices within subdomains II and XI. Based on these homology models and models of ten other plant kinases, two subfamilies of plant protein kinase sequence could be differentiated based on subdomain XI structure. Database searches revealed that subdomains VIa, VIb, VIII and IX of the Pto-like class are unique to plant species, whereas for a second subfamily of plant protein kinases (containing the common bean kinase PvPKI) these subdomains are also similar to those found in non-plant eukaryotic species.  相似文献   

7.
The Pto gene encodes a serine-threonine kinase that confers resistance in tomato to Pseudomonas syringae pv tomato strains expressing the avirulence gene avrPto. We examined the ability of Pto to function in tobacco, a species that is sexually incompatible with tomato. Evidence that a heterologous Pto-like signal transduction pathway is present in tobacco was suggested by the fact that tobacco line Wisconsin-38 exhibits a hypersensitive response after infection with P. syringae pv tabaci expressing avrPto. We introduced a Pto transgene into cultivar Wisconsin-38 and assessed the ability of transformed plants to further inhibit growth of the P. s. tabaci strain expressing avrPto. The Pto-transformed tobacco plants exhibited a significant increase in resistance to the avirulent P. s. tabaci strain compared with wild-type tobacco as indicated by (1) more rapid development of a hypersensitive resistance response at high inoculum concentrations (108 colony-forming units per mL); (2) lessened severity of disease symptoms at moderate inoculum concentrations (106 and 107 colony-forming units per mL); and (3) reduced growth of avirulent P. s. tabaci in inoculated leaves. The results indicate that essential components of a Pto-mediated signal transduction pathway are conserved in tobacco and should prompt examination of resistance gene function across even broader taxonomic distances.  相似文献   

8.
An important signaling pathway for disease resistance in tomato involves the R gene product Pto which phosphorylates Ptil, a downstream member of this signaling cascade. Both Pto and Pti1 are Ser/Thr protein kinases capable of autophosphorylation in vitro. Two soybean (Glycine max L. Merr. var. Hobbit) cDNAs (sPti1a and sPti1b) were cloned and sequenced and found to each have 78% amino acid sequence identity with tomato Pti1. Glutathione S-transferase fusions of sPti1a and b expressed in Escherichia coli did not autophosphorylate in vitro, but were efficiently phosphorylated by tomato Pto. Replacement of Tyr197 with an Asp that is invariant at this position in other protein kinases did not restore autophosphorylation activity to sPti1a or b. Tyr197 was also present in the Pti1 homologues of three distant relatives of G. max. Together these results suggest that soybean Pti1 might function in a Pto-like signaling pathway that does not require Pti1 kinase activity.  相似文献   

9.
Twenty three DNA fragments with a size of about 520 bp have been cloned from rice genome by PCR amplification using primers designed according to the conserved region of most plant resistance (R) genes which have Nucleotide Binding Site (NBS) and Leucine-Rich Repeat (LRR) domains. Homologous comparison showed that these fragments contained typical motifs of the NBS-LRR resistance gene class, kinase 1a, kinase 2a, kinase 3a and domain 2. Thus they were named R gene homologous sequences (RS). These RS were divided into 4 groups by clustering analysis and mapped onto chromosomes 1, 3, 4, 7, 8, 9, 10 and 11, respectively, by genetic mapping. Ten RS were located in the chromosomal intervals where known R genes had been mapped. Further RFLP analysis of an RS, RS13, near the bacterial blight resistance gene Xa4 locus on chromosome 11 among near isogenic lines and pyramiding lines of Xa4 showed that RS13 was possibly amplified from the gene family of Xa4.  相似文献   

10.
番茄Pto基因是一类可以编码丝氨酸/苏氨酸激酶(STK)序列的广谱抗性候选基因,其序列克隆与鉴定为深入了解番茄的抗病机制奠定了基础.在该研究中,一对依据Pto基因的保守序列设计的简并引物被用来扩增巴西橡胶中Pto基因抗病同源序列,扩增得到了一个约550 bp的基因片段,其随后被克隆并测序.序列分析发现,其中的7个抗病同源序列与Pto基因高度同源(BLASTX E value <3e-53),所以其被认为是Pto基因抗病同源序列(Pto-RGCs).通过巴西橡胶的Pto-RGCs多序列比对表明,这些序列包含了多个STKs保守的次级结构域.此外,系统发育分析也表明,巴西橡胶的Pto-RGCs属于Pto基因同源的R基因.该研究结果中Pto-RGCs可为巴西橡胶抗病的发展提供一个有效的基因资源.  相似文献   

11.
The AvrPto protein from Pseudomonas syringae pv tomato is delivered into plant cells by the bacterial type III secretion system, where it either promotes host susceptibility or, in tomato plants expressing the Pto kinase, elicits disease resistance. Using two-dimensional gel electrophoresis, we obtained evidence that AvrPto is phosphorylated when expressed in plant leaves. In vitro phosphorylation of AvrPto by plant extracts occurs independently of Pto and is due to a kinase activity that is conserved in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), and Arabidopsis thaliana. Three Ser residues clustered in the C-terminal 18 amino acids of AvrPto were identified in vitro as putative phosphorylation sites, and one site at S149 was directly confirmed as an in vivo phosphorylation site by mass spectrometry. Substitution of Ala for S149 significantly decreased the ability of AvrPto to enhance disease symptoms and promote growth of P. s. tomato in susceptible tomato leaves. In addition, S149A significantly decreased the avirulence activity of AvrPto in resistant tomato plants. Our observations support a model in which AvrPto has evolved to mimic a substrate of a highly conserved plant kinase to enhance its virulence activity. Furthermore, residues of AvrPto that promote virulence are also monitored by plant defenses.  相似文献   

12.
The tomato disease resistance (R) gene Pto specifies race-specific resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avrPto gene. Pto encodes a serine/threonine protein kinase that is postulated to be activated by a physical interaction with the AvrPto protein. Here, we report that overexpression of Pto in tomato activates defense responses in the absence of the Pto-AvrPto interaction. Leaves of three transgenic tomato lines carrying the cauliflower mosaic virus 35S::Pto transgene exhibited microscopic cell death, salicylic acid accumulation, and increased expression of pathogenesis-related genes. Cell death in these plants was limited to palisade mesophyll cells and required light for induction. Mesophyll cells of 35S::Pto plants showed the accumulation of autofluorescent compounds, callose deposition, and lignification. When inoculated with P. s. tomato without avrPto, all three 35S::Pto lines displayed significant resistance and supported less bacterial growth than did nontransgenic lines. Similarly, the 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium fulvum. These results demonstrate that defense responses and general resistance can be activated by the overexpression of an R gene.  相似文献   

13.
14.
Whereas resistance genes (R-genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance (quantitative trait loci, QTLs) are still unknown. We hypothesized that genes at QTLs could share homologies with cloned R-genes. We used a PCR-based approach to isolate R-gene analogs (RGAs) with consensus primers corresponding with conserved domains of cloned R-genes: (i) the nucleotide binding site (NBS) and hydrophobic domain, and (ii) the kinase domain. PCR-amplified fragments were sequenced and mapped on a pepper intraspecific map. NBS-containing sequences of pepper, most similar to the N gene of tobacco, were classified into seven families and all mapped in a unique region covering 64 cM on the Noir chromosome. Kinase domain containing sequences and cloned R-gene homologs (Pto, Fen, Cf-2) were mapped on four different linkage groups. A QTL involved in partial resistance to cucumber mosaic virus (CMV) with an additive effect was closely linked or allelic to one NBS-type family. QTLs with epistatic effects were also detected at several RGA loci. The colocalizations between NBS-containing sequences and resistance QTLs suggest that the mechanisms of qualitative and quantitative resistance may be similar in some cases.  相似文献   

15.
16.
Twenty three DNA fragments with a size of about 520 bp have been cloned from rice genome by PCR amplification using primers designed according to the conserved region of most plant resistance (R) genes which have Nucleotide Binding Site (NBS) and Leucine-Rich Repeat (LRR) domains. Homologous comparison showed that these fragments contained typical motifs of the NBS-LRR resistance gene class, kinase 1a, kinase 2a, kinase 3a and domain 2. Thus they were named R gene homologous sequences (RS). These RS were divided into 4 groups by clustering analysis and mapped onto chromosomes 1, 3, 4, 7, 8, 9, 10 and 11, respectively, by genetic mapping. Ten RS were located in the chromosomal intervals where known R genes had been mapped. Further RFLP analysis of an RS, RS13, near the bacterial blight resistance geneXa4 locus on chromosome 11 among near isogenic lines and pyramiding lines ofXa4 showed that RS13 was possibly amplified from the gene family ofXa4.  相似文献   

17.
Comparative genetics of disease resistance within the solanaceae   总被引:21,自引:0,他引:21  
Grube RC  Radwanski ER  Jahn M 《Genetics》2000,155(2):873-887
Genomic positions of phenotypically defined disease resistance genes (R genes) and R gene homologues were analyzed in three solanaceous crop genera, Lycopersicon (tomato), Solanum (potato), and Capsicum (pepper). R genes occurred at corresponding positions in two or more genomes more frequently than expected by chance; however, in only two cases, both involving Phytophthora spp., did genes at corresponding positions have specificity for closely related pathogen taxa. In contrast, resistances to Globodera spp., potato virus Y, tobacco mosaic virus, and tomato spotted wilt virus were mapped in two or more genera and did not occur in corresponding positions. Without exception, pepper homologues of the cloned R genes Sw-5, N, Pto, Prf, and I2 were found in syntenous positions in other solanaceous genomes and in some cases also mapped to additional positions near phenotypically defined solanaceous R genes. This detailed analysis and synthesis of all available data for solanaceous R genes suggests a working hypothesis regarding the evolution of R genes. Specifically, while the taxonomic specificity of host R genes may be evolving rapidly, general functions of R alleles (e.g., initiation of resistance response) may be conserved at homologous loci in related plant genera.  相似文献   

18.
以植物丝氨酸/苏氨酸蛋白激酶类( serine-threonine kinase,STK)抗病基因产物催化结构域I和Ⅸ的保守氨基酸序列( FGK/V/L/SVYK/RG,DY/IYSF/YGV/I/M)设计简并引物,对甜瓜(Cucumis melo L.)基因组DNA进行PCR扩增,得到大约500 bp的目的条带,通过重组质粒克隆并经PCR检测后得到12条不同的DNA序列,命名为tg1~tg12,其中tg2、tg5、tg9和tg12(Genbank登录号为JN646853 ~JN646856)可以编码完整的氨基酸序列.Blast分析结果显示:4条序列均具有ATP结合部位、底物结合部位和激酶结构域的活化环(A-loop)等,属于典型的蛋白激酶基因家族,可能是STK类R基因的同源序列片段;4条序列与蓖麻(Ricinus communisL.)的STK同源性均较高.氨基酸序列比对结果显示tg2、tg5、tg9和tg12均具有R基因的9个保守结构域,为STK类候选抗病基因类序列.分子系统树显示tg2、tg5、tg9和tg12与已知的R基因(Pto、Lr10和Lectin)在氨基酸水平上的相似性仅为33.5% ~53.4%,且4个甜瓜同源序列的氨基酸相似性也较低,表明甜瓜RGAs标记可能具有较高的特异性.  相似文献   

19.
Plant disease resistance (R) genes that mediate recognition of the same pathogen determinant sometimes can be found in distantly related plant families. This observation implies that some R gene alleles may have been conserved throughout the diversification of land plants. To address this question, we have compared R genes from Glycine max (soybean), Rpg1-b, and Arabidopsis thaliana, RPM1, that mediate recognition of the same type III effector protein from Pseudomonas syringae, AvrB. RPM1 has been cloned previously, and here, we describe the isolation of Rpg1-b. Although RPM1 and Rpg1-b both belong to the coiled-coil nucleotide binding site (NBS) Leu-rich repeat (LRR) class of R genes, they share only limited sequence similarity outside the conserved domains characteristic of this class. Phylogenetic analyses of A. thaliana and legume NBS-LRR sequences demonstrate that Rpg1-b and RPM1 are not orthologous. We conclude that convergent evolution, rather than the conservation of an ancient specificity, is responsible for the generation of these AvrB-specific genes.  相似文献   

20.
Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号