首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation field in deep space contains high levels of high-energy protons and substantially lower levels of high-atomic-number, high-energy (HZE) particles. Calculations indicate that cellular nuclei of human space travelers will be hit during a 3-year Mars mission by approximately 400 protons and approximately 0.4 HZE particles. Thus most cells in astronauts will be hit by a proton(s) before being hit by an HZE particle. To investigate effects of dual ion irradiations on human cells, we irradiated primary human neonatal fibroblasts with protons (1 GeV/nucleon, 20 cGy) followed from 2.5 min to 48 h later by iron or titanium ions (1 GeV/nucleon, 20 cGy) and then measured clonogenic survival and frequency of anchorage-independent growth. This frequency depends on the interval between hydrogen- and iron-ion irradiation, with a critical window between 2.5 min and 1 h producing about three times more anchorage-independent colonies per survivor than expected from simple addition of the two ions separately. The hydrogen-titanium-ion dual-beam irradiation produced similar increases that persisted to approximately 6 h. At longer intervals, anchorage-independent growth frequencies were similar to those expected for additivity. However, irradiation of cells with either an iron or a titanium particle first followed by protons produced only additive levels.  相似文献   

2.
Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of l-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 μM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have been shown to be activated in cells exposed to radiation from photons (like cell cycle arrest in G1/S), and that supplementation with SeM abolishes HZE particle-induced differential expression of many genes. Understanding the roles that these genes play in the radiation-induced transformation of cells may help to decipher the origins of radiation-induced cancer.  相似文献   

3.
In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ~0.47 mGy iron ions (~0.02 iron ions/cell) or ~70 μGy protons (~2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.  相似文献   

4.
Solar particle events (SPEs) present a major radiation-related risk for manned exploratory missions in deep space. Within a short period the astronauts may absorb doses that engender acute effects, in addition to the risk of late effects, such as the induction of cancer. Using primary human cells, we studied clonogenic survival and the induction of neoplastic transformation after exposure to a worst case scenario SPE. We simulated such an SPE with monoenergetic protons (50, 100, 1000 MeV) delivered at a dose rate of 1.65 cGy min?1 in a dose range from 0 to 3 Gy. For comparison, we exposed the cells to a high dose rate of 33.3 cGy min?1. X rays (100 kVp, 8 mA, 1.7 mm Al filter) were used as a reference radiation. Overall, we observed a significant sparing effect of the SPE dose rate on cell survival. High-dose-rate protons were also more efficient in induction of transformation in the dose range below 30 cGy. However, as dose accumulated at high dose rate, the transformation levels declined, while at the SPE dose rate, the number of transformants continued to increase up to about 1 Gy. These findings suggest that considering dose-rate effects may be important in evaluating the biological effects of exposure to space radiation. Our analyses of the data based on particle fluence showed that lethality and transforming potential per particle clearly increased with increasing linear energy transfer (LET) and thus with the decreasing energy of protons. Further, we found that the biological response was determined not only by LET but also type of radiation, e.g. particles and photons. This suggests that using γ or X rays may not be ideal for assessing risk associated with SPE exposures.  相似文献   

5.
The radiation environment in space is complex in terms of both the variety of charged particles and their dose rates. Simulation of such an environment for experimental studies is technically very difficult. However, with the variety of beams available at the National Space Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL) it is possible to ask questions about potential interactions of these radiations. In this study, the end point examined was transformation in vitro from a preneoplastic to a neoplastic phenotype. The effects of 1?GeV/n iron ions and 1?GeV/n protons alone provided strong evidence for suppression of transformation at doses ≤5?cGy. These ions were also studied in combination in so-called mixed-beam experiments. The specific protocols were a low dose (10?cGy) of protons followed after either 5-15?min (immediate) or 16-24?h (delayed) by 1?Gy of iron ions and a low dose (10?cGy) of iron ions followed after either 5-15?min or 16-24?h by 1?Gy of protons. Within experimental error the results indicated an additive interaction under all conditions with no evidence of an adaptive response, with the one possible exception of 10?cGy iron ions followed immediately by 1?Gy protons. A similar challenge dose protocol was also used in single-beam studies to test for adaptive responses induced by 232?MeV/n protons and (137)Cs γ radiation and, contrary to expectations, none were observed. However, subsequent tests of 10?cGy of (137)Cs γ radiation followed after either 5-15?min or 8?h by 1?Gy of (137)Cs γ radiation did demonstrate an adaptive response at 8?h, pointing out the importance of the interval between adapting and challenge dose. Furthermore, the dose-response data for each ion alone indicate that the initial adapting dose of 10?cGy used in the mixed-beam setting may have been too high to see any potential adaptive response.  相似文献   

6.
During space travel, astronauts will be exposed to protons and heavy charged particles. Since the proton flux is high compared to HZE particles, on average, it is assumed that a cell will be hit by a proton before it is hit by an HZE ion. Although the effects of individual ion species on human cells have been investigated extensively, little is known about the effects of exposure to mixed beam irradiation. To address this, we exposed human epithelial cells to protons followed by HZE particles and analyzed chromosomal damage using the multicolor banding in situ hybridization (mBAND) procedure. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of intra-chromosomal aberrations (inversions and deletions within a single painted chromosome) as well as inter-chromosomal aberrations (translocation to unpainted chromosomes). Our results indicated that chromosome aberration frequencies from exposures to protons followed by Fe ions did not simply decrease as the interval between the two exposures increased, but peak when the interval was 30 min.  相似文献   

7.
An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.  相似文献   

8.
Of particular concern for the health of astronauts during space travel is radiation from protons and high atomic number (Z), high energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton and HZE particle radiation in the plasma of CBA mice and the protective effect of dietary supplement agents. The results indicate that exposure to proton and HZE particle radiation significantly decreased the plasma level of total antioxidants in the irradiated CBA mice. Dietary supplementation with l-selenomethionine (SeM) or a combination of selected antioxidant agents (which included SeM) could partially or completely prevent the decrease in the total antioxidant status in the plasma of animals exposed to proton or HZE particle radiation. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense system; this adverse biological effect can be prevented at least partially by dietary supplementation with agents expected to have effects on antioxidant activities.  相似文献   

9.
Oncogenic transformation of C3H 10T1/2 cells was determined after exposure to graded doses of 4.3-MeV alpha particles LET = 101 keV/microns. The source of alpha particles was 244Cm and the irradiation was done in an irradiation chamber built for the purpose. Graded doses in the range of 0.2 to 300 cGy were studied with special emphasis on the low-dose region, with as many as seven points in the interval up to 10 cGy. The dose-effect relationship was a complex function. Transformation frequency increased with dose up to 2 cGy; it seemed to flatten at doses between 2 and 20 cGy but increased again at higher doses. A total of 21 cGy was delivered in a single dose or in 3 or 10 equal fractions at an interval of 1.5 h. An inverse dose-protraction effect of 1.4 was found with both fractionation schemes. Measurements of the mitotic index of the population immediately before the various fractions revealed a strong effect on the rate of cell division even after very low doses of radiation. Mitotic yield decreased markedly with the total dose delivered, and it was as low as 50% of the control value after 4.2 cGy and 20% after 14 cGy with both fractionation schemes.  相似文献   

10.
We have investigated the effect of fission-spectrum neutron dose fractionation on neoplastic transformation of exponentially growing C3H 10T1/2 cells. Total doses of 10.8, 27, 54, and 108 cGy were given in single doses or in five equal fractions delivered at 24-h intervals in the biological channel of the RSV-TAPIRO reactor at CRE-Casaccia. Both cell inactivation and neoplastic transformation were more effectively induced by fission neutrons than by 250-kVp X rays. No significant effect on cell survival or neoplastic transformation was observed with split doses compared to single doses of fission-spectrum neutrons. Neutron RBE values relative to X rays determined from data for survival and neoplastic transformation were comparable.  相似文献   

11.
One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE particles suggest that at least part of the cytogenetic damage measured was caused by the delta rays. Much of the energy deposited by the primary HZE particles may result in cell killing and may therefore be "wasted" as far as production of detectable micronuclei is concerned. The role of wasted energy in studies of cancer induction may be important in risk estimates for exposure to HZE particles.  相似文献   

12.
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictions of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Comparisons of the resulting model parameters to those used in the NASA radiation quality factor function are discussed.  相似文献   

13.
Of particular concern for the health of astronauts during space travel is radiation from protons and high-mass, high-atomic-number (Z), and high-energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by gamma rays, protons and HZE-particle radiation. The results demonstrate that the plasma level of total antioxidants in Sprague-Dawley rats was significantly decreased (P < 0.01) in a dose-dependent manner within 4 h after exposure to gamma rays. Exposure to protons and HZE-particle radiation also significantly decreased the serum or plasma level of total antioxidants in the irradiated animals. Diet supplementation with L-selenomethionine alone or a combination of selected antioxidant agents was shown to partially or completely prevent the decrease in the serum or plasma levels of total antioxidants in animals exposed to gamma rays, protons or HZE particles. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense and that this adverse biological effect can be prevented at least partially by dietary supplementation with L-selenomethionine and antioxidants.  相似文献   

14.
In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton, HZE-particle and gamma radiation in CBA mice. The results demonstrated that the plasma level of TAS was significantly decreased (P < 0.05) in CBA mice after exposure to a 50-cGy dose of radiation from HZE particles or a 3-Gy dose of radiation from protons or gamma rays. Diet supplementation with Bowman-Birk Inhibitor Concentrate (BBIC), L-selenomethionine (L-SeM), or a combination of N-acetyl cysteine, sodium ascorbate, co-enzyme Q10 (CoQ10), alpha-lipoic acid, L-SeM and vitamin E succinate could partially or completely prevent the reduction in the plasma level of TAS in CBA mice exposed to proton or HZE-particle radiation. The selected antioxidant combination with or without CoQ10 has a comparable protective effect on the gamma-radiation-induced drop in TAS in CBA mice. These results indicate that BBIC, L-SeM and the selected antioxidant combinations may serve as countermeasures for space radiation-induced adverse biological effects.  相似文献   

15.
Malignancy is considered to be a particular risk associated with exposure to the types of ionizing radiation encountered during extended space flight. In the present study, two dietary preparations were evaluated for their ability to prevent carcinogenesis in CBA mice exposed to different forms of space radiation: protons and highly energetic heavy particles (HZE particles). One preparation contained a mixture of antioxidant agents. The other contained the soybean-derived Bowman-Birk protease inhibitor (BBI), used in the form of BBI Concentrate (BBIC). The major finding was that there was a reduced risk of developing malignant lymphoma in animals exposed to space radiation and maintained on diets containing the antioxidant formulation or BBIC compared to the irradiated animals maintained on the control diet. In addition, the two different dietary countermeasures also reduced the yields of a variety of different rare tumor types observed in the animals exposed to space radiation. These results suggest that dietary supplements could be useful in the prevention of malignancies and other neoplastic lesions developing from exposure to space radiation.  相似文献   

16.
Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members.  相似文献   

17.
A dose-response curve for gamma-radiation-induced neoplastic transformation of HeLa x skin fibroblast human hybrid cells over the dose range 0.1 cGy to 1 Gy is presented. In the experimental protocol used, the spontaneous (background) frequency of neoplastic transformation of sham-irradiated cultures was compared to that of cultures which had been irradiated with (137)Cs gamma radiation and either plated immediately or held for 24 h at 37 degrees C prior to plating, for assay for neoplastic transformation. The pooled data from a minimum of three repeat large-scale experiments at each dose demonstrated a reduced transformation frequency for the irradiated compared to the sham-irradiated cells for doses of 0.1, 0.5, 1, 5 and 10 cGy for the delayed-plating arm. The probability of this happening by chance is given by 1/2(n), where n is the number of observations (5); i.e., 1/32 congruent with 0.031. This is indicative of an adaptive response against spontaneous neoplastic transformation at least up to a dose of 10 cGy of gamma radiation. The high-dose data obtained at 30 and 50 cGy and 1 Gy showed a good fit to a linear extrapolation through the sham-irradiated, zero-dose control. The delayed-plating data at 10 cGy and below showed a statistically significant divergence from this linear extrapolation.  相似文献   

18.
19.
This paper discusses two phenomena of importance at low doses that have an impact on the shape of the dose-response relationship. First, there is the bystander effect, the term used to describe the biological effects observed in cells that are not themselves traversed by a charged particle, but are neighbors of cells that are; this exaggerates the effect of small doses of radiation. Second, there is the adaptive response, whereby exposure to a low level of DNA stress renders cells resistant to a subsequent exposure; this reduces the effect of low doses of radiation. The present work was undertaken to assess the relative importance of the adaptive response and the bystander effect induced by radiation in C3H 10T(1/2) cells in culture. When the single-cell microbeam delivered from 1 to 12 alpha particles through the nuclei of 10% of C3H 10T(1/2) cells, more cells were inactivated than were actually traversed by alpha particles. The magnitude of this bystander effect increased with the number of particles per cell. An adaptive dose of 2 cGy of gamma rays, delivered 6 h beforehand, canceled out about half of the bystander effect produced by the alpha particles.  相似文献   

20.
High-charge and energy (HZE) nuclei represent one of the main health risks for human space exploration, yet little is known about the mechanisms responsible for the high biological effectiveness of these particles. We have used in situ hybridization probes for cross-species multicolor banding (RxFISH) in combination with telomere detection to compare yields of different types of chromosomal aberrations in the progeny of human peripheral blood lymphocytes exposed to either high-energy iron ions or gamma rays. Terminal deletions showed the greatest relative variation, with many more of these types of aberrations induced after exposure to accelerated iron ions (energy 1 GeV/nucleon) compared with the same dose of gamma rays. We found that truncated chromosomes without telomeres could be transmitted for at least three cell cycles after exposure and represented about 10% of all aberrations observed in the progeny of cells exposed to iron ions. On the other hand, the fraction of cells carrying stable, transmissible chromosomal aberrations was similar in the progeny of cells exposed to the same dose of densely or sparsely ionizing radiation. The results demonstrate that unrejoined chromosome breaks are an important component of aberration spectra produced by the exposure to HZE nuclei. This finding may well be related to the ability of such energetic particles to produce untoward late effects in irradiated organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号