首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic system yields self-cleaving inteins for bioseparations.   总被引:1,自引:0,他引:1  
A self-cleaving element for use in bioseparations has been derived from a naturally occurring, 43 kDa protein splicing element (intein) through a combination of protein engineering and random mutagenesis. A mini-intein (18 kDa) previously engineered for reduced size had compromised activity and was therefore subjected to random mutagenesis and genetic selection. In one selection a mini-intein was isolated with restored splicing activity, while in another, a mutant was isolated with enhanced, pH-sensitive C-terminal cleavage activity. The enhanced-cleavage mutant has utility in affinity fusion-based protein purification. These mutants also provide new insights into the structural and functional roles of some conserved residues in protein splicing.  相似文献   

2.
3.
Modular organization of inteins and C-terminal autocatalytic domains.   总被引:14,自引:1,他引:14       下载免费PDF全文
Analysis of the conserved sequence features of inteins (protein "introns") reveals that they are composed of three distinct modular domains. The N-terminal (N) and C-terminal (C) domains are predicted to perform different parts of the autocatalytic protein splicing reaction. An optional endonuclease domain (EN) is shown to correspond to different types of homing endonucleases in different inteins. The N domain contains motifs predicted to catalyze the first steps of protein splicing, leading to the cleavage of the intein N terminus from its protein host. Intein N domain motifs are also found in C-terminal autocatalytic domains (CADs) present in hedgehog and other protein families. Specific residues in the N domain of intein and CADs are proposed to form a charge relay system involved in cleaving their N-termini. The intein C domain is apparently unique to inteins and contains motifs that catalyze the final protein splicing steps: ligation of the intein flanks and cleavage of its C terminus to release the free intein and spliced host protein. All intein EN domains known thus far have dodecapeptide (DOD, LAGLI-DADG) type homing endonuclease motifs. This work identifies an EN domain with an HNH homing-endonuclease motif and two new small inteins with no EN domains. One of these small inteins might be inactive or a "pseudo intein." The results suggest a modular architecture for inteins, clarify their origin and relationship to other protein families, and extend recent experimental findings on the functional roles of intein N, C, and EN motifs.  相似文献   

4.
An intein is a protein sequence embedded within a precursor protein that is excised during protein maturation. Inteins were first found encoded in the VMA gene of Saccharomyces cerevisiae. Subsequently, they have been found in diverse organisms (eukaryotes, archaea, eubacteria and viruses). The VMA intein has been found in various saccharomycete yeasts but not in other fungi. Different inteins have now been found widely in the fungi (ascomycetes, basidiomycetes, zygomycetes and chytrids) and in diverse proteins. A protein distantly related to inteins, but closely related to metazoan hedgehog proteins, has been described from Glomeromycota. Many of the newly described inteins contain homing endonucleases and some of these are apparently active. The enlarged fungal intein data set permits insight into the evolution of inteins, including the role of horizontal transfer in their persistence. The diverse fungal inteins provide a resource for biotechnology using their protein splicing or homing endonuclease capabilities.  相似文献   

5.
6.
7.
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.  相似文献   

8.
Inteins are protein sequences that autocatalytically splice themselves out of protein precursors – analogous to introns – and ligate the flanking regions into a functional protein. Inteins are present in all three kingdoms of life, but have a sporadic distribution. They are found predominantly in proteins involved in DNA replication and repair such as helicases. The distribution of inteins suggests an adaptive function. The evolutionary forces which shaped the observed distribution of inteins are generally unknown. Some authors view inteins only as the selfish elements and argue that frequent horizontal transfer is behind inteins sporadic dissemination (Gogarten et al., 2002). On the other hand, the ancient nature of the inteins and the process of gain/loss could lead to the scattered distribution of inteins among species (Pietrokovski, 2001). It is necessary to note that the exclusively selfish nature of inteins is questionable; recent findings support the hypothesis of possible functional roles of inteins in protein regulation (Callahan et al., 2011). Moreover, both hypotheses were built on a limited number of the intein representatives. The amount of genomic data available for bacteria is enormous and in silico analysis for diverse inteins is warranted. We decided to take advantage of these microbial genomic data and performed comprehensive mining for the inteins using a bioinformatic pipeline. Altogether, 1757 species were analysed from 19 major phyla yielding more than 4500 intein-like sequences. The majority of these bacterial inteins were not described previously. Approximately 55% of the inteins were found in polymerases, helicases, or recombinases (Figure 1). Phylogenetic analysis indicated the complex evolutionary dynamics of inteins which includes horizontal transfers, high evolutionary rates coupled with recurrent gains, and losses. The preponderance of inteins in helicases and reductases is being investigated in terms of functional relevance.  相似文献   

9.
Regulation of protein activity with small-molecule-controlled inteins   总被引:1,自引:0,他引:1  
Inteins are the protein analogs of self-splicing RNA introns, as they post-translationally excise themselves from a variety of protein hosts. Intein insertion abolishes, in general, the activity of its host protein, which is subsequently restored upon intein excision. These protein elements therefore have the potential to be used as general molecular "switches" for the control of arbitrary target proteins. Based on rational design, an intein-based protein switch has been constructed whose splicing activity is conditionally triggered in vivo by the presence of thyroid hormone or synthetic analogs. This modified intein was used in Escherichia coli to demonstrate that a number of different proteins can be inactivated by intein insertion and then reactivated by the addition of thyroid hormone via ligand-induced splicing. This conditional activation was also found to occur in a dose-dependent manner. Rational protein engineering was then combined with genetic selection to evolve an additional intein whose activity is controlled by the presence of synthetic estrogen ligands. The ability to regulate protein function post-translationally through the use of ligand-controlled intein splicing will most likely find applications in metabolic engineering, drug discovery and delivery, biosensing, molecular computation, as well as many additional areas of biotechnology.  相似文献   

10.
Prokaryotic introns and inteins: a panoply of form and function.   总被引:13,自引:1,他引:12       下载免费PDF全文
  相似文献   

11.
12.
内含肽介导的蛋白质断裂被广泛地应用于蛋白质纯化、连接和环化. 但目前的方法都是用传统的连续的内含肽来介导蛋白质断裂反应,因而往往存在自发性断裂、产率低等问题. 本实验选择3个S1型新型断裂内含肽Ter ThyX、Ssp GryB和Rma DnaB来实现蛋白质断裂反应的可控性. 在可控性C端断裂反应中,S1型断裂内含肽的C端片段(IC )与硫氧还蛋白(T)融合作为前体蛋白,加入化学合成的Ssp DnaB S1型断裂内含肽 的N端小肽与二硫苏糖醇(DTT)共同诱导C端断裂反应.结果表明,该小肽可以诱导这 3个不同的S1型断裂内含肽的前体蛋白发生C端断裂反应. 该方法为利用内含肽C端断 裂介导的蛋白质纯化提供了更多的选择,并为内含肽的结构与功能的关系研究提供-有用的线索.  相似文献   

13.
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.  相似文献   

14.
Inteins are genetic elements found inside the coding regions of different host proteins and are translated in frame with them. The intein-encoded protein region is removed by an autocatalytic protein-splicing reaction that ligates the host protein flanks with a peptide bond. This reaction can also occur in trans with the intein and host protein split in two. After translation of the two genes, the two intein parts ligate their flanking protein parts to each other, producing the mature protein. Naturally split inteins are only known in the DNA polymerase III alpha subunit (polC or dnaE gene) of a few cyanobacteria. Analysing the phylogenetic distribution and probable genetic propagation mode of these split inteins, we conclude that they are genetically fixed in several large cyanobacterial lineages. To test our hypothesis, we sequenced parts of the dnaE genes from five diverse cyanobacteria and found all species to have the same type of split intein. Our results suggest the occurrence of a genetic rearrangement in the ancestor of a large division of cyanobacteria. This event fixed the dnaE gene in a unique two-genes one-protein configuration in the progenitor of many cyanobacteria. Our hypothesis, findings and the cloning procedure that we established allow the identification and acquisition of many naturally split inteins. Having a large and diverse repertoire of these unique inteins will enable studies of their distinct activity and enhance their use in biotechnology.  相似文献   

15.
Naturally split inteins mediate a traceless protein ligation process known as protein trans‐splicing (PTS). Although frequently used in protein engineering applications, the efficiency of PTS can be reduced by the tendency of some split intein fusion constructs to aggregate; a consequence of the fragmented nature of the split intein itself or the polypeptide to which it is fused (the extein). Here, we report a strategy to help address this liability. This involves embedding the split intein within a protein sequence designed to stabilize either the intein fragment itself or the appended extein. We expect this approach to increase the scope of PTS‐based protein engineering efforts.  相似文献   

16.
《Cell》2022,185(17):3104-3123.e28
  1. Download : Download high-res image (259KB)
  2. Download : Download full-size image
  相似文献   

17.
The peripheral nervous system (PNS) is complex and omnipresent. The PNS targets all parts of the body starting from early stages of embryonic development, and in large part, is derived from multipotent migratory neural crest stem cells. Current opinion mostly perceives the PNS as a means of communication and information exchange between the central nervous system, the rest of the body and the environment. Additionally, the PNS is largely associated with autonomic control. Being an “alternative brain” it provides local regulation of processes in organs. However, it has become evident in recent years that in addition to these main canonical functions the PNS possesses a number of other important roles in development and homeostasis of targeted tissues, for instance, in nerve-dependent regeneration. The PNS represents a niche that hosts neural crest-derived peripheral glial cells, or, in other words, neural crest-like multipotent cells throughout the entire body. These multipotent nerve-adjacent cells can be reprogrammed in vivo and play a number of roles from creating pigmentation to controlling regeneration of a limb in amphibians or skin in rodents. In the current review we outline newly emerged, non-canonical functions of the PNS and briefly describe cellular and molecular aspects of these alternative functions.  相似文献   

18.
Mini-inteins derived from Synechocystis sp. (Ssp DnaB intein) and Mycobacterium xenopi (Mxe GyrA intein) that have been modified to cleave peptide bonds at their C and N termini, respectively, were cloned in-frame to the N and C termini of a target protein. Peptide bond cleavage of the modified inteins generated an N-terminal cysteine and a C-terminal thioester on the same protein. These complementary reactive groups underwent intra- or intermolecular condensation to generate circular or polymeric protein species with a new peptide bond at the site of ligation. Three cyclic peptides, BBP, an organ specific localization peptide; RGD, an inhibitor of platelet aggregation; and CDR-H3/C2, which inhibits HIV-1 replication, were isolated using the two-intein system. BBP, RGD, and CDR-H3/C2 had masses of 977.1, 1119.9, and 2098.6 g/mol, respectively, as determined by matrix-assisted laser desorption-time of flight mass spectrometry, which agreed well with the values of 977.2, 1120.3, and 2098.3 g/mol, respectively, predicted for the cyclic species. This system was used to cyclize proteins as large as 395 amino acids. Furthermore, multimers of thioredoxin were formed upon concentration of the reactive species, indicating the potential to form novel biomaterials based on fibrous proteins.  相似文献   

19.
20.
A genetic selection system that detects splicing and nonsplicing activities of inteins was developed based on the ability to rescue a T4 phage strain with a conditionally inactive DNA polymerase. This phage defect can be complemented by expression of plasmid-encoded phage RB69 DNA polymerase. Insertion of an intein gene into the active site of the RB69 DNA polymerase gene renders polymerase activity and phage viability dependent on protein splicing. The effectiveness of the system was tested by screening for thermosensitive splicing mutants. Development of genetic systems with the potential of identifying protein splicing inhibitors is a first step towards controlling proliferation of pathogenic microbes harboring inteins in essential proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号