首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Monoallelic gene expression has played a significant role in the evolution of mammals enabling the expansion of a vast repertoire of olfactory receptor types and providing increased sensitivity and diversity. Monoallelic expression of immune receptor genes has also increased diversity for antigen recognition, while the same mechanism that marks a single allele for preferential rearrangement also provides a distinguishing feature for directing hypermutations. Random monoallelic expression of the X chromosome is necessary to balance gene dosage across sexes. In marsupials only the maternal X chromosome is expressed, while in eutherian mammals the paternal X genes are silenced in the developing placenta and early blastocyst. These examples of epigenetic gene regulation commonly employ asynchrony of replication, the binding of polycomb proteins and antisense RNA, and histone modifications to chromatin structure. The same is true for genomic imprinting which among vertebrates is unique to mammals and represents a special kind of epigenetic modification that is heritable according to parent of origin. Genomic imprinting pervades many aspects of mammalian growth and evolution but in particular has played a significant role in the co‐adaptive evolution of the mother and foetus.  相似文献   

3.
ABSTRACT: BACKGROUND: Proteins of the mammalian PYHIN (IFI200/HIN-200) family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2) binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses. RESULTS: No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C) in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns. CONCLUSIONS: The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between mammalian species due to lineage-specific duplication and loss, which probably indicates different adaptations for fighting infectious disease. Non-genomic DNA can indicate infection, or a mutagenic threat. We hypothesise that defence of the genome against endogenous retroelements has been an additional evolutionary driver for PYHIN proteins.  相似文献   

4.
Plant enolase: gene structure, expression, and evolution.   总被引:19,自引:0,他引:19       下载免费PDF全文
Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle.  相似文献   

5.
Transposable elements, and retroviral-like elements in particular, are a rich potential source of genetic variation within a host's genome. Many mutations of endogenous genes in phylogenetically diverse organisms are due to insertion of elements that affect gene expression by altering the normal pattern of regulation. While few such associations are known to have been maintained over time, two recently elucidated examples suggest transposable elements may have a significant impact in evolution of gene expression. The first example, concerning the mouse sex-limited protein (Slp), clearly establishes that ancient retroviral enhancer sequences now confer hormonal dependence on the adjacent gene. The second example shows that within the human amylase gene family, salivary specific expression has arisen due to inserted sequences, deriving perhaps from a conjunction of two retrotransposable elements.  相似文献   

6.
7.
8.
In response to microbial or environmental "danger" signals, represented by structural motifs not normally expressed by cells, Toll-like receptors mediate intracellular signaling that leads to inflammatory gene expression. In response to agonists, TLR aggregation enables the recruitment and/or activation of TLR-specific adapter molecules. To date, four adapter proteins have been identified: MyD88, TIRAP/Mal, TRIF/TICAM-1, and TIRP/TRAM/TICAM-2. The interaction of the different TLRs with distinct combinations of adapter molecules creates a platform to which additional kinases, transacting factors, and possibly other molecules are recruited, events that lead, ultimately, to gene expression. Given the rapidity with which such interactions have been described, we have attempted to summarize our current understanding of the adapters that are so essential for TLR signaling and provide a working model for future studies.  相似文献   

9.
10.
Firefly luciferase gene: structure and expression in mammalian cells.   总被引:340,自引:113,他引:340       下载免费PDF全文
The nucleotide sequence of the luciferase gene from the firefly Photinus pyralis was determined from the analysis of cDNA and genomic clones. The gene contains six introns, all less than 60 bases in length. The 5' end of the luciferase mRNA was determined by both S1 nuclease analysis and primer extension. Although the luciferase cDNA clone lacked the six N-terminal codons of the open reading frame, we were able to reconstruct the equivalent of a full-length cDNA using the genomic clone as a source of the missing 5' sequence. The full-length, intronless luciferase gene was inserted into mammalian expression vectors and introduced into monkey (CV-1) cells in which enzymatically active firefly luciferase was transiently expressed. In addition, cell lines stably expressing firefly luciferase were isolated. Deleting a portion of the 5'-untranslated region of the luciferase gene removed an upstream initiation (AUG) codon and resulted in a twofold increase in the level of luciferase expression. The ability of the full-length luciferase gene to activate cryptic or enhancerless promoters was also greatly reduced or eliminated by this 5' deletion. Assaying the expression of luciferase provides a rapid and inexpensive method for monitoring promoter activity. Depending on the instrumentation employed to detect luciferase activity, we estimate this assay to be from 30- to 1,000-fold more sensitive than assaying chloramphenicol acetyltransferase expression.  相似文献   

11.
Sucrose synthase is a key enzyme in sucrose metabolism in plant cells, and it is involved in the synthesis of cell wall cellulose. Although the sucrose synthase gene (SUS) family in the model plants Arabidopsis thaliana has been characterized, little is known about this gene family in trees. This study reports the identification of two novel SUS genes in the economically important poplar tree. These genes were expressed predominantly in mature xylem. Using molecular cloning and bioinformatics analysis of the Populus genome, we demonstrated that SUS is a multigene family with seven members that each exhibit distinct but partially overlapping expression patterns. Of particular interest, three SUS genes were preferentially expressed in the stem xylem, suggesting that poplar SUSs are involved in the formation of the secondary cell wall. Gene structural and phylogenetic analyses revealed that the Populus SUS family is composed of four main subgroups that arose before the separation of monocots and dicots. Phylogenetic analyses associated with the tissue- and organ-specific expression patterns. The high intraspecific nucleotide diversity of two SUS genes was detected in the natural population, and the π nonsyn/π syn ratio was significantly less than 1; therefore, SUS genes appear to be evolving in Populus, primarily under purifying selection. This is the first comprehensive study of the SUS gene family in woody plants; the analysis includes genome organization, gene structure, and phylogeny across land plant lineages, as well as expression profiling in Populus.  相似文献   

12.
Glutathione transferases (GSTs) are ubiquitous, multifunctional proteins encoded by large gene families. In different plant species this gene family is comprised of 25–60 members, that can be grouped into six classes on the basis of sequence identity, gene organization and active site residues in the protein. The Phi and Tau classes are the most represented and are plant specific, while Zeta and Theta GSTs are found also in animals. Despite pronounced sequence and functional diversification, GSTs have maintained a highly conserved three-dimensional structure through evolution. Most GSTs are cytosolic and active as dimers, performing diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. Among their catalytic activities are the conjugation of electrophilic substrates to glutathione, glutathione-dependent isomerizations and reductions of toxic organic hydroperoxides. Their main non-catalytic role is as hormone and flavonoid ligandins. GST genes are predominantly organized in clusters non-randomly distributed in the genome. Phylogenetic studies indicate that plant GSTs have mainly evolved after the divergence of plants, the two prevalent Phi and Tau classes being the result of recent, multiple duplication events.  相似文献   

13.
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.  相似文献   

14.
DNA isolated from mammalian cell nuclear reveals discrete size patterns when partially digested with micrococcal nuclease. The DNA repeat lengths from different tissues within a species or from different species may vary. These differences have been attributed to the presence of different species of histone H1. To examine the nature of regulation of DNA repeat lengths and their possible relationship to histone H1, we have selected several mouse and human cell lines that differ in their DNA repeat lengths and examined them and their cell hybrids. 24 mouse X human and five mouse X mouse hybrid cell lines were analyzed. All the interspecific hybrids exhibited the repeat pattern characteristic of the murine parent. The mouse intraspecific hybrids had a repeat pattern of only one of the parents. We conclude that the partial human chromosome complements retained in the hybrids assume the repeat lengths exhibited by the mouse cells. Because H1 histones have been implicated in the determination of DNA repeat lengths, we also investigated the regulation of H1 histone expression in these cell hybrids. Purified H1 histones were radioactively labeled in vitro, and individual subfractions were subjected to proteolysis followed by gel electrophoresis. The resulting partial peptide maps off H1 histone subfractions A and B were distinguishable from one another and from different cell lines. In the mouse X human hybrids analyzed, only the mouse H1 histones were detected. These observations were extended to H2b by analysis of the hybrid cell histone by Triton-acid-urea gels. Neither the DNA repeat length nor histone expression is affected by the presence of any specific human chromosome. The fact that human genes are expressed in these hybrids suggests that the H1 histones of one species is able to interact with the chromatin of another species in a biologically funtional conformation. Analysis of the intraspecific PG19 X B82 (mouse X mouse) hybrids reveals the presence of H1 histone subfractions of the B82 mouse cells. Because these hybrids exhibit the nucleosome repeat length only of the PG19 cells, it appears that if histone H1 plays a role in determining the repeat length it does so in consort with other nonhistone chromosomal proteins.  相似文献   

15.
16.
[This corrects the article on p. 496 in vol. 58.].  相似文献   

17.
18.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.  相似文献   

19.
20.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. Gene mutation is an important factor associated with some diseases risk and gene polymorphism of TLRs can influence their function to take part in the physiological process in the body. Chronic kidney disease causes high morbidity and mortality, and renal transplantation provides the optimal treatment for people with end-stage renal disease. Innate immune takes a most important role in renal transplantation. There are some studies reporting that TLRs gene polymorphism takes an important role in the renal transplantation. However, no review summed up the role of TLRs gene polymorphism in renal transplantation. The literatures were searched extensively and this review was performed to review the role of TLRs gene polymorphism in renal transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号