首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.  相似文献   

2.
The most prominent tyrosyl-phosphorylated protein in maturing sea star oocytes was identified as the 44 kDa myelin basic protein (MBP) kinase p44mpk. Immunoblotting studies with anti-phosphotyrosine PY-20 antibody and phosphoamino acid analysis of in vivo [32P]phosphate-labelled p44mpk showed that the tyrosyl phosphorylation of the kinase correlated with a greater than 10-fold stimulation of its MBP phosphotransferase activity. The activation of p44mpk was reversed almost completely by purified preparations of the protein-tyrosyl phosphatases CD45 and 1B. Purified p44mpk has previously been shown to undergo autophosphorylation in vitro on seryl residues and this was associated with further enhancement of its MBP phosphorylating activity (Sanghera et al. (1991) J. Biol. Chem. 266, 6700-6707). p44mpk also underwent seryl phosphorylation during oocyte maturation, and the protein-seryl/threonyl phosphatase 2A reversed partially the maturation-associated stimulation of its MBP kinase activity. The properties of p44mpk resemble the murine 42 kDa mitogen-activated protein kinase (p42mapk). While p44mpk may feature the phosphorylatable tyrosyl residue that is critical for activation in p42mapk, it lacks the upstream threonyl phosphorylation site that is also required for p42mapk activity (Payne et al. (1991) EMBO J: 10, 885-892). These findings indicate partial differences in the regulatory mechanisms that govern the activities of these isozymes.  相似文献   

3.
The subcellular distribution and regulation of MAP kinase isoforms in chicken hepatoma DU249 cells was investigated with antibodies directed against peptides patterned after sequences in the mitogen-activated protein (MAP) kinases, sea star p44mpk, and rat p44erk1. MonoQ chromatography of cytosol from these cells afforded the resolution of at least four peaks of myelin basic protein (MBP) phosphotransferase activity, but only one of these (peak II) was stimulated in extracts from phorbol ester-treated cells. A 40- to 41-kDa (p41) doublet on Western blots detected with three different MAP kinase antibodies was coincident with peak II, and it probably corresponded to the avian homolog of p42mapk/erk2. Immunofluorescent studies with DU249 cells and chicken embryo fibroblasts revealed that most of the cross-reactive protein with at least two different MAP kinase antibodies was distributed in the nucleus. Subcellular fractionation studies confirmed a predominantly nuclear localization for p41 MAP kinase. Nocodazole arrest of DU249 cells was exploited for the detection of an M-phase-activated MBP kinase that was resolved from p41 MAP kinase by phenyl-Superose chromatography. Western blotting analysis with antibodies for the cdc2-encoded protein kinase and p13suc1-agarose binding studies allowed positive identification of this MBP kinase as p34cdc2.  相似文献   

4.
A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates.  相似文献   

5.
Mitogen-activated protein kinase (p42mapk) becomes transiently activated after treatment of serum-starved murine Swiss 3T3 cells or EL4 thymocytes with a diversity of mitogens. Similarly, a meiosis-activated protein kinase (p44mpk) becomes stimulated during maturation of sea star oocytes induced by 1-methyladenine. Both p42mapk and p44mpk have been identified as protein-serine/threonine kinases that are activated as a consequence of their phosphorylation. Because homologous protein kinases may play essential roles in both mitogenesis and oogenesis, we have compared in detail the biochemical properties of these two kinases. We find that these kinases are highly related based on their in vitro substrate specificities, sensitivity to inhibitors, and immunological cross-reactivity. However, they differ in apparent molecular weight and can be separated chromatographically, indicating that the two enzymes are distinct. Furthermore, in the course of this investigation, we have identified a 44-kDa protein kinase in mitogen-stimulated Swiss mouse 3T3 cells and EL4 thymocytes that co-purifies with p44mpk and thus appears to be a closer homolog of the sea star enzyme. Analysis of these protein kinases clarifies the relationships between a set of tyrosine-phosphorylated 41-45-kDa proteins present in mitogen-stimulated cells (Martinez, R., Nakamura., K. D., and Weber, M. J. (1982) Mol. Cell. Biol. 2, 653-655; Cooper, J. A., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37), two myelin basic protein kinases identified in epidermal growth factor-treated Swiss mouse 3T3 cells (Ahn, N. G., Weiel, J. E., Chan, C. P., and Krebs, E. G. (1990) J. Biol. Chem. 265, 11487-11494), and p42mapk. Our work points to the existence of a group of related serine/threonine protein kinases, regulated by tyrosine phosphorylation and functioning at different stages of the cell cycle.  相似文献   

6.
Vasoconstrictors such as angiotensin II (ang II) stimulate vascular smooth muscle cell growth and share many signal transduction mechanisms with growth factors. Recently, growth factors have been shown to stimulate mitogen-activated protein (MAP) kinases, a family of serine/threonine protein kinases which phosphorylate pp90rsk, a cytosolic kinase that phosphorylates ribosomal S6 protein. We examined the effect of ang II on MAP kinase activity and phosphorylation. Ang II stimulated MAP kinase activity by 4-fold after 5 min exposure and also increased tyrosine phosphorylation of 42 kDa (74 +/- 41%) and 44 kDa (263 +/- 85%) proteins, shown to be pp42mapk and pp44mapk by Western blot analysis using a MAP kinase antibody. These results suggest that ang II-stimulated protein synthesis is mediated by a MAP kinase dependent pathway.  相似文献   

7.
Members of the mitogen-activated protein (MAP) kinase family are implicated in mediating entry of cells into the cell cycle, as well as passage through meiotic M phase. These kinases have attracted much interest because their activation involves phosphorylation on both tyrosine and threonine residues, but little is known about their physiological targets. In this study, two distinct members of the MAP kinase family (p44mpk and p42mapk) are shown to phosphorylate chicken lamin B2 at a single site identified as Ser16. Moreover, these MAP kinases cause depolymerization of in-vitro-assembled longitudinal lamin head-to-tail polymers. Ser16 was previously shown to be phosphorylated during mitosis in vivo, and to be a target of the mitotic protein kinase p34cdc2 in vitro. Accordingly, lamins were proposed to be direct in vivo substrates of p34cdc2. This proposal is supported by quantitative analyses indicating that lamin B2, when assayed in vitro, is a substantially better substrate for p34cdc2 than for MAP kinases. Nevertheless, a physiological role of MAP kinases in lamin phosphorylation is not excluded. The observation that members of the MAP kinase family display sequence specificities overlapping that of p34cdc2 raises the possibility that some of the purported substrates of p34cdc2 may actually be physiological substrates of MAP kinases.  相似文献   

8.
A protein kinase characterized by its ability to phosphorylate microtubule-associated protein-2 (MAP2) and myelin basic protein (MBP) is thought to play a pivotal role in the transduction of signals from many receptors in response to their ligands. A kinase with such activity, named extracellular signal-regulated kinase 1 (ERK1), is activated rapidly by numerous extracellular signals, requires phosphorylation on tyrosine to be fully active, and in vitro can activate a kinase (a ribosomal S6 protein kinase) that is downstream in phosphorylation cascades. From the protein sequence predicted by the rat ERK1 cDNA, peptides were synthesized and used to elicit antibodies. The antibodies recognize both ERK1; a closely related kinase, ERK2; and a third novel ERK-related protein. Using these antibodies we have determined that ERK1 and ERK2 are ubiquitously distributed in rat tissues. Both enzymes are expressed most highly in brain and spinal cord as are their mRNAs. The third ERK protein was found in spinal cord and in testes. The antibodies detect ERKs in cell lines from multiple species, including human, mouse, dog, chicken, and frog, in addition to rat, indicating that the kinases are conserved across species. ERK1 and ERK2 have been separated by chromatography on Mono Q. Stimulation by insulin increases the phosphorylation of both kinases on tyrosine residues, as assessed by immunoblotting with phosphotyrosine antibodies, and retards their elution from Mono Q. Each of these ERKs appears to account for a distinct peak of MBP kinase activity. The activity in each peak is diminished by incubation with either phosphatase 2a or CD45. Therefore, both enzymes have similar modes of regulation and appear to contribute to the growth factor-stimulated MAP2/MBP kinase activity measured in cell extracts.  相似文献   

9.
《The Journal of cell biology》1993,122(5):1079-1088
Mitogen-activated protein kinases (p42mapk and p44mapk) are serine/threonine kinases that are activated rapidly in cells stimulated with various extracellular signals. This activation is mediated via MAP kinase kinase (p45mapkk), a dual specificity kinase which phosphorylates two key regulatory threonine and tyrosine residues of MAP kinases. We reported previously that the persistent phase of MAP kinase activation is essential for mitogenically stimulated cells to pass the "restriction point" of the cell cycle. Here, using specific polyclonal antibodies and transfection of epitope-tagged recombinant MAP kinases we demonstrate that these signaling protein kinases undergo distinct spatio-temporal localization in growth factor-stimulated cells. In G0-arrested hamster fibroblasts the activator p45mapkk and MAP kinases (p42mapk, p44mapk) are mainly cytoplasmic. Subsequent to mitogenic stimulation by serum or alpha-thrombin both MAP kinase isoforms translocate into the nucleus. This translocation is rapid (seen in 15 min), persistent (at least during the entire G1 period up to 6 h), reversible (by removal of the mitogenic stimulus) and apparently 'coupled' to the mitogenic potential; it does not occur in response to nonmitogenic agents such as alpha-thrombin-receptor synthetic peptides and phorbol esters that fail to activate MAP kinases persistently. When p42mapk and p44mapk are expressed stably at high levels, they are found in the nucleus of resting cells; this nuclear localization is also apparent with kinase-deficient mutants (p44mapk T192A or Y194F). In marked contrast the p45mapkk activator remains cytoplasmic even during prolonged growth factor stimulation and even after high expression levels achieved by transfection. We propose that the rapid and persistent nuclear transfer of p42mapk and p44mapk during the entire G0-G1 period is crucial for the function of these kinases in mediating the growth response.  相似文献   

10.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

11.
Synthetic peptides have been used to define the consensus amino acid sequence for substrate recognition by the meiosis-activated myelin basic protein (MBP) kinase (p44mpk), which was purified from maturing sea star oocytes. This protein kinase shares many properties with the mitogen-activated microtubule-associated protein-2 kinase (p42mapk) in vertebrates. Recently, Thr-97 in the tryptic fragment KNIVTPRTPPPSQGK of bovine MBP was identified as the major site of phosphorylation by p44mpk (Sanghera, J. S., Aebersold, R., Morrison, H. D., Bures, E. J., and Pelech, S. L. (1990) FEBS Lett. 273, 223-226). Synthetic peptides modeled after this sequence revealed that the presence of a proline residue C-terminal (+1 position) to the phosphorylatable threonine (or serine) residue was critical for recognition by p44mpk. Although not essential, a proline residue located at the -2 position enhanced the Vmax of peptide phosphorylation. Basic, acidic, and non-polar residues were equally tolerated at the -1 position. The presence of an amino acid residue at position -3 also increased peptide phosphorylation. Thus, the optimum consensus sequence for phosphorylation by p44mpk was defined as Pro-X-(Ser/Thr)-Pro, where X is a variable amino acid residue, but ideally not a Pro. Peptides that included this sequence were phosphorylated by p44mpk with Vmax values approaching 1 mumol.min-1.mg-1 and with apparent Km values of approximately 1 mM). Pseudosubstrate peptides in which the phosphorylatable residue was replaced by valine or alanine were weak inhibitors of p44mpk (apparent Ki values of approximately 3 mM). Over 40 distinct protein kinases contain Pro-X-(Ser/Thr)-Pro sequences including the human receptors for insulin and epidermal growth factor, and kinases encoded by the human proto-oncogenes abl, neu, and raf-1, and Schizosaccharomyces pombe cell cycle control genes ran-1 and wee-1. Multiple putative sites were also identified in rat microtubule-associated protein-2, human retinoblastoma protein, human tau protein, and Drosophila myb protein and RNA polymerase II.  相似文献   

12.
Enhanced activity of receptor tyrosine kinases such as the PDGF beta-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB-, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44(mapk)/p42(mapk)) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1-100 microM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44(mapk)/p42(mapk) was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 microM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB-induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1-100 microM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rbeta, phosphatidylinositol 3'-kinase, and phospholipase C-gamma1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20-50 microM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rbeta and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.  相似文献   

13.
Two site-specific antibodies have been prepared by immunizing rabbits with chemically synthesized peptides derived from the partial cDNA-predicted amino acid sequence of extracellular signal-regulated kinase 1 (ERK1), which has been proposed to encode the microtubule-associated protein 2 (MAP2) kinase (Boulton, T. G., Yancopoulos, G. D., Gregory, J. S., Slauer, C., Moomaw, C., Hsu, J., and Cobb, M. H. (1990) Science 249, 64-67). With immunoprecipitation in the presence of sodium dodecyl sulfate (SDS) and Western blotting, an antibody to the peptide containing triple tyrosine residues (alpha Y91) resembling one of the insulin receptor autophosphorylation sites specifically recognized 42- and 44-kDa proteins. On the other hand, an antibody to the peptide corresponding to the COOH terminus portions (alpha C92) of the ERK1 cDNA gene product recognized the 44-kDa protein much more efficiently than the 42-kDa protein. With immunoprecipitation in the absence of SDS, alpha Y91 could barely recognize these two proteins and alpha C92 recognized the 44-kDa protein but failed to recognize the 42-kDa protein. Kinase assays in myelin basic protein (MBP)-containing gel, after SDS-polyacrylamide gel electrophoresis, revealed that insulin or 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated MBP kinase activity in alpha Y91 immunoprecipitates comigrated at molecular mass 42 and 44 kDa. On the other hand, the stimulated MBP kinase activity in alpha C92 immunoprecipitates comigrated only at molecular mass 44 kDa. Insulin stimulated the MBP kinase activity in gels and phosphorylation of these two proteins by greater than 10-fold with a maximal level at 5 min. Insulin and TPA rapidly stimulate the phosphorylation of the 42- and 44-kDa proteins via de novo threonine and tyrosine phosphorylation. Tryptic phosphopeptide mapping analysis of the 42- and 44-kDa proteins, respectively, revealed a single major phosphopeptide containing phosphothreonine and phosphotyrosine, which was common to both insulin- and TPA-stimulated phosphoproteins. Protein phosphatase 2A treatment of these two phosphoproteins caused a complete loss of kinase activity with selective dephosphorylation of phosphothreonine. These data strongly suggest that these two proteins are highly related to the mitogen-activated protein (MAP) kinase with an apparent molecular mass of 42 kDa (Ray, L. B., and Sturgill, T. W. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3753-3757) and that these two immunologically similar but distinct MBP/MAP2 kinases may represent isozymic forms of MBP/MAP2 kinases. These data also demonstrate that insulin and TPA activate MBP/MAP2 kinase activity by de novo phosphorylation of threonine and tyrosine residues via a very similar pathway.  相似文献   

14.
A growth factor-stimulated protein kinase activity that phosphorylates the epidermal growth factor (EGF) receptor at Thr669 has been described (Countaway, J. L., Northwood, I. C., and Davis, R. J. (1989) J. Biol. Chem. 264, 10828-10835). Anion-exchange chromatography demonstrated that this protein kinase activity was accounted for by two enzymes. The first peak of activity eluted from the column corresponded to the microtubule-associated protein 2 (MAP2) kinase. However, the second peak of activity was found to be a distinct enzyme. We present here the purification of this enzyme from human tumor KB cells by sequential ion-exchange chromatography. The isolated protein kinase was identified as a 46-kDa protein by polyacrylamide gel electrophoresis and silver staining. Gel filtration chromatography demonstrated that the enzyme was functional in a monomeric state. A kinetic analysis of the purified enzyme was performed at 22 degrees C using a synthetic peptide substrate based on the primary sequence of the EGF receptor (KREL VEPLT669PSGEAPNQALLR). The Km(app) for ATP was 40 +/- 5 microM (mean +/- S.D., n = 3). GTP was not found to be a substrate for the purified enzyme. The Km(app) for the synthetic peptide substrate was 260 +/- 40 microM (mean +/- S.D., n = 3). The Vmax(app) for the isolated protein kinase was determined to be 400-900 nmol/mg/min. The purified enzyme was designated EGF receptor Thr669 (ERT) kinase. It is likely that the MAP2 and ERT kinases account for the phosphorylation of the EGF receptor at Thr669 observed in cultured cells. The marked stimulation of protein kinase activity caused by growth factors indicates that these enzymes may have an important function during signal transduction.  相似文献   

15.
Two peaks of mitogen-activated protein (MAP) kinase activator activity are resolved upon ion exchange chromatography of cytosolic extracts from epidermal growth factor-stimulated A431 cells. Two forms of the activator (1 and 2) have been purified from these peaks, using chromatography on Q-Sepharose, heparin-agarose, hydroxylapatite, ATP-agarose, Sephacryl S-300, Mono S, and Mono Q. The two preparations each contained one major protein band with an apparent molecular mass of 46 or 45 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Evidence identifying the MAP kinase activators as the 46- and 45-kDa proteins is presented. Using inactive mutants of MAP kinase as potential substrates, it was found that each preparation of MAP kinase activator catalyzes phosphorylation of the regulatory residues, threonine 188 and tyrosine 190, of Xenopus MAP kinase. These results support the concept that the MAP kinase activators are protein kinases. These MAP kinase kinases demonstrate an apparent high degree of specificity toward the native conformation of MAP kinase, although slow autophosphorylation on serine, threonine, and tyrosine residues and phosphorylation of myelin basic protein on serine and threonine residues is detected as well.  相似文献   

16.
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadinm salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.Abbreviations eIF-4 eukaryotic protein synthesis initiation factor-4 - GRB-2 growth factor receptor bound protein-2 - GSK-3 Glycogen Synthase Kinase-3 - IRS-1 insulin receptor substrate-1 - ISPK insulin stimulated protein kinase - MAPK mitogen activated protein kinase, also known as - ERK extracellular signal regulated kinase - MAPKK mitogen activated protein kinase kinase, also known as-MEK, MAPK or ERK kinase - PHAS-1 phosphorylated heat and acid stable protein regulated by insulin - PI3K phosphatidyl inositol 3-kinase - PP1-G protein phosphatase-glycogen bound form - PTK protein tyrosine kinase - PTPase protein tyrosine phosphatase - rsk ribosomal s6 kinases - shc src homology domain containing protein - SOS son of sevenless  相似文献   

17.
18.
Chevalier D  Allen BG 《Biochemistry》2000,39(20):6145-6156
Hsp27 kinase activities were studied in adult rat ventricular myocytes following sequential chromatography on Mono Q and Mono S. A basal level of activity was present following cell isolation. FPLC on Mono Q revealed three peaks of activity, peaks 'a', 'b', and 'c'. A fourth peak, 'd', was detected upon subsequent chromatography of the Mono Q flow-through on Mono S. Immunoblotting revealed that peaks 'a', 'b', and 'c' contained predominantly a 49 kDa form of MAPKAP kinase-2. Peak 'd' contained a 43 kDa form. 'In-gel' kinase assays using hsp27 indicated both forms of MAPKAP kinase-2 were active. No other bands of hsp27 kinase activity were detected. Both forms of hsp27 kinase immunoprecipitated with a MAPKAP kinase-2 antibody and have therefore been named MAPKAP kinase-2alpha (p49) and MAPKAP kinase-2beta (p43). MAPKAP kinase-2beta chromatographed on Superose 12 as a 60.7 kDa monomer whereas the behavior of MAPKAP kinase-2alpha suggested both a 65.7 kDa monomer and higher molecular mass complexes. Both activities phosphorylated hsp27 on serine residues, and two-dimensional phosphopeptide mapping indicated the same sites were phosphorylated. A tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated both MAPKAP kinase-2alpha and MAPKAP kinase-2beta activity. Inhibition of MEK activation with PD 98059 or p38alpha/beta MAP kinase activity with SB203580 blocked activation by PMA. However, whereas PD 98059 inhibited only the PMA-stimulated activation, SB203580 inhibited both PMA-stimulated and basal hsp27 phosphorylation. These data demonstrate the presence of two forms of MAPKAP kinase-2 in adult ventricular myocytes. Both forms are activated indirectly by the ERK MAP kinase pathway and directly by p38 MAP kinase but independently regulated.  相似文献   

19.
Treatment of quiescent Swiss 3T3 mouse fibroblasts with bombesin resulted in a rapid 6-8-fold stimulation of cytosolic Ser/Thr kinase activities toward the S6 peptide (RRLSSLR), myelin basic protein (MBP), and the G peptide (SPQPSRRGSESSEE). Anion exchange Mono Q chromatography resolved multiple S6 peptide- and G peptide kinase activities and two MBP kinase peaks. Both MBP- and several S6 peptide kinase peaks could be inactivated by PCSL (PP2A2) phosphatase action. This indicates that the bombesin-induced activation of these enzymes is mediated by a Ser/Thr phosphorylation event. The S6 peptide kinases as well as the two MBP kinases stimulated in response to bombesin are similar to those activated by epidermal growth factor in Swiss 3T3 fibroblasts which suggests that the early events of the signal transduction pathway mediated by these growth factors in Swiss 3T3 cells may converge in the activation of common Ser/Thr kinases. Bombesin, which acts as a sole mitogen for Swiss 3T3 fibroblasts, also produced a several-fold increase in the kinase activity toward the RRREEESEEE peptide, a specific substrate for CK-2. This kinase activity was heparin-sensitive and also measurable with the G peptide (SPQPSRRGSESSEE) and GS-1 peptide (YRRAAVPPSPSPSLSRHSSPHQSEDEE), which contain consensus sequences for phosphorylation by CK-2. The bombesin-stimulated CK-2 activity could not be measured in whole cytosols but was revealed by the anion exchange chromatography step. The activation of CK-2 was not reversed by PCSL phosphatase action. The implication of CK-2 in the signal transduction pathway of bombesin is discussed.  相似文献   

20.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号