首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allelopathic aquatic plants for aquatic weed management   总被引:1,自引:0,他引:1  
This report presents, results of a feasibility study of use of allelopathic aquatic plants for aquatic weed management. In order to establish a list of potential allelopathic plants, we selected 16 aquatic plants native to the southeastern United States and subjected them to two bioassays — one involving lettuce seedlings and one involving the aquatic plantLemna minor as the target species. The lettuce seedling bioassay was selected because it is a widely used, experimentally simple assay to determine allelopathic activity. However, it uses lettuce, a terrestrial plant, as the target species, and thus may be less appropriate for use with aquatic plants. TheL. minor assay involves an aquatic plant as the target species and so is more appropriate for our goals, but it is experimentally much more complex and time-consuming. The plants selected for study wereBrasenia schreberi, Cabomba caroliniana, Ceratophyllum demersum, Eleocharis acicuiaris, Eleocharis obf usa, Hydrilla verticillata, Juncus repens, Limnobium spongia, Myriophyllum aquaticum, Myriophyllum spicatum, Najas guadalupensis, Nymphaea odorata, Nymphoides cordata, Potamogeton foliosus, Sparganium americanum, and Val/isneria americana.Nymphaea odorata (leaves and petioles) inhibited 78 % of lettuce seedling radicle growth and 98 % ofL. minor frond production. Brasenia schreberi inhibited 82 % of lettuce seedling radicle growth and 68 % of L. minor frond production. These results suggest thatN. odorata andB. schreberi are both highly inhibitory and are therefore candidates for use in aquatic weed management. Results also suggest that the simple lettuce seedling assay is a reasonable first “easy” one to use in an attempt to determine allelopathic potential of aquatic plants.  相似文献   

2.
Biological plant invasions pose a serious threat to native biodiversity and have received much attention, especially in terrestrial habitats. In freshwater ecosystems impacts of invasive plant species are less studied. We hypothesized an impact on organisms from the water column and from the sediment. We then assessed the impact of three aquatic invasive species on the plants and macroinvertebrates: Hydrocotyle ranunculoides, Ludwigia grandiflora and Myriophyllum aquaticum. Our research on 32 ponds in Belgium indicated that the reduction in the native plant species richness was a common pattern to invasion. However, the magnitude of impacts were species specific. A strong negative relationship to invasive species cover was found, with submerged vegetation the most vulnerable to the invasion. Invertebrate richness, diversity and abundance were measured in sediments of invaded and uninvaded ponds along a gradient of H. ranunculoides, L. grandiflora, and M. aquaticum species cover. We found a strong negative relationship between invasive species cover and invertebrate abundance, probably due to unsuitable conditions of the detritus for invertebrate colonization. Taxonomic compositions of aquatic invertebrate assemblages in invaded ponds differed from uninvaded ponds. Sensitive benthos, such as mayflies were completely absent in invaded ponds. The introduction of H. ranunculoides, L. grandiflora, and M. aquaticum in Belgian ponds has caused significant ecological alterations in the aquatic vegetation and the detritus community of ponds.  相似文献   

3.
花马湖位于湖北省鄂州市境内,面积约27.5km~2。湖中分布有水生高等植物82种2变种。花马湖水生植被可分为15个群丛,其中菱群丛、竹叶眼子菜群丛、金鱼藻+狐尾藻+菹草+苦草群丛较为重要。湖中水生植波呈不规则的环带状分布,并可划分为湿生、挺水、浮叶和沉水4个植被带,各带均有相应的群丛分布。  相似文献   

4.
We investigated aquatic plant diversity by conducting the field investigation and collecting the published data in the arid regions of Northwest China. Two hundred and twenty four taxa of vascular aquatic plants representing 64 genera and 34 families occur in this area, 8.48% of which are endemic. Among these, 1 genus and 6 species were new state records and 1 family, 9 genera and 29 species were new area records. Typhaceae, Potamogetonaceae, Juncaginaceae and Haloragaceae were the most frequent families (considering relative frequency of occurrence), whereas Cyperaceae, Potamogetonaceae and Ranuncnlaceae are the most species-rich. The most frequent genera were Typha, Potamogeton, and Triglochin, and the most species-rich were Potamogeton, Eleocharis and Scirpus. The most frequent species are Triglochin palustre, Myriophyllum spicatum, Potamogeton pectinatus and Typha angustifolia. Aquatic plants diversity is distributed unevenly in the region. The maximum species occurs in Dzungarian basin while the least species in Hexi corridor. The aquatic flora in arid zone of China is not distinctive although some endemic species are found, most species are widely distributed. Local aquatic plants diversity can be influenced by many factors such as hydrological alteration, habitat loss, over-grazing, high human population pressure, global climate change, an inappropriate economic development policy. Among them, the largest threat to aquatic plants biodiversity may be habitat loss due to hydrological alteration. In order to conserve the aquatic plants biological resources and biodiversity in this region, some strategies and measures must be suggested including strengthening scientific research and biodiversity education in the local people, balancing economic development and ecological conservation, and enhancing governmental assistance and subsidy to the local residents.  相似文献   

5.
Submersed aquatic plants have a key role in maintaining functioning aquatic ecosystems through their effects on the hydrological regime, sedimentation, nutrient cycling and habitat of associated fauna. Modifications of aquatic plant communities, for example through the introduction of invasive species, can alter these functions. In the Sacramento-San Joaquin River Delta, California, a major invasive submersed plant, Brazilian waterweed Egeria densa, has become widespread and greatly affected the functionality of the submersed aquatic plant community. Rapid assessments of the distribution and abundance of this species are therefore crucial to direct management actions early in the season. Given the E. densa bimodal growth pattern (late spring and fall growth peaks), summer assessments of this species may indicate which and where other submersed species may occur and fall assessments may indicate where this and other species may occur in the following spring, primarily because the Delta’s winter water temperatures are usually insufficient to kill submersed aquatic plant species. We assessed community composition and distribution in the fall of 2007 and summer of 2008 using geostatistical analysis; and measured summer biomass, temperature, pH, salinity, and turbidity. In the fall of 2007, submersed aquatic plants covered a much higher proportion of the waterways (60.7%) than in the summer of 2008 (37.4%), with a significant overlap between the seasonal distribution of native and non-native species. Most patches were monospecific, and multispecies patches had significantly higher dominance by E. densa, co-occurring especially with Ceratophyllum demersum. As species richness of non-natives increased there was a significant decrease in richness of natives, and of native biomass. Sustained E. densa summer biomass negatively affected the likelihood of presence of Myriophyllum spicatum, Potamogeton crispus, and Elodea canadensis but not their biomass within patches. Depth, temperature and salinity were associated with biomass; however, the direction of the effect was species specific. Our results suggest that despite native and invasive non-native submersed plant species sharing available niches in the Delta, E. densa affects aquatic plant community structure and composition by facilitating persistence of some species and reducing the likelihood of establishment of other species. Successful management of this species may therefore facilitate shifts in existing non-native or native plant species.  相似文献   

6.
Parker JD  Caudill CC  Hay ME 《Oecologia》2007,151(4):616-625
Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard’s tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard’s tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard’s tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard’s tail leaves within 2 weeks. In contrast, leaf abundance increased by 73–93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard’s tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and communities of herbaceous aquatic plants and extends the consequences of beaver activities beyond ecosystem engineering.  相似文献   

7.
Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known about how the replacement of native by non-native vegetation affects predator-prey dynamics. We hypothesize that plant refuge provisioning depends on (1) the plant’s native status, (2) plant structural complexity and morphology, (3) predator identity, and (4) prey identity, as well as that (5) structurally similar living and artificial plants provide similar refuge. We used aquatic communities as a model system and compared the refuge provided by plants to macroinvertebrates (Daphnia pulex, Gammarus pulex and damselfly larvae) in three short-term laboratory predation experiments. Plant refuge provisioning differed between plant species, but was generally similar for native (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus) and non-native plants (Vallisneria spiralis, Myriophyllum heterophyllum, Cabomba caroliniana). However, plant refuge provisioning to macroinvertebrate prey depended primarily on predator (mirror carp: Cyprinus carpio carpio and dragonfly larvae: Anax imperator) and prey identity, while the effects of plant structural complexity were only minor. Contrary to living plants, artificial plant analogues did improve prey survival, particularly with increasing structural complexity and shoot density. As such, plant rigidity, which was high for artificial plants and one of the living plant species evaluated in this study (Ceratophyllum demersum), may interact with structural complexity to play a key role in refuge provisioning to specific prey (Gammarus pulex). Our results demonstrate that replacement of native by structurally similar non-native vegetation is unlikely to greatly affect predator-prey dynamics. We propose that modification of predator-prey interactions through plant invasions only occurs when invading plants radically differ in growth form, density and rigidity compared to native plants.  相似文献   

8.
Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non‐invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnHpsbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH‐psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.  相似文献   

9.
武汉东湖水生植物群落演替的研究   总被引:24,自引:1,他引:23       下载免费PDF全文
 本文根据1992~1993年调查结果并结合前人研究资料,讨论了东湖水生植物群落30多年来的动态变化及其与富营养化和渔业养殖等因素的关系,提出了东湖水生植物群落的演替系列是从微齿眼子菜阶段→微齿眼子菜+大茨藻+金鱼藻+狐尾藻阶段→微齿眼子菜消失阶段→大茨藻阶段→大茨藻+狐尾藻+苦草阶段。同时,还从物种生理生态、补偿和再生能力、生活史及生殖对策、种间关系等方面探讨了水生植物群落演替的物种替代机制及其演替模式,为湖泊水生植被恢复、人工调控和优化提供理论依据。  相似文献   

10.
A native strain of the fungal plant pathogen Mycoleptodiscus terrestris is capable of causing under experimental conditions necrotic shoot lesions and a generalized decline and disintegration of Eurasian watermilfoil (Myriophyllum spicatum), an exotic submerged aquatic weed in North America. The potential of this fungus to cause disease on nontarget plants was evaluated on 33 species and cultivars in 11 families. The nontarget selection, intended as a Tier I group, was biased toward probable suscepts consisting of submerged, floating, and emergent aquatic species and terrestrial crop plants. The plants were exposed to the fungal mycelium formulated in alginate beads. Pathogenicity rather than phytotoxicity was the primary mode of attack by the fungus. Of the 16 nontarget aquatic species tested, the fungus was pathogenic to Hydrilla verticillata (hydrilla), Myriophyllum aquaticum (parrotfeather), and Ceratophyllum demersum (coontail), but only in hydrilla did it cause plant mortality comparable to that in Eurasian watermilfoil. The remaining 13 submerged, floating, and emergent aquatic species were unaffected. Of the 17 terrestrial species screened, none was significantly affected by the fungus in germination studies, but postemergent disease symptoms developed on seedlings of 10 species. Four of the 10, Medicago sativa (alfalfa), Lotus corniculatus (birdsfoot trefoil), Trifolium hybridum (alyce clover), and T. repens (white clover), developed disease affecting 26-50% of their tissues. Thus, this host range testing scheme, based on the concept of screening plants under the maximum hazard potential, helped to identify susceptible species. Nonetheless, it exaggerated the nontarget risk due to the small number of host species tested. Screening a taxonomically diverse and larger selection of plants as well as testing under conditions of less severe exposure to the fungal inoculum are necessary to obtain a more realistic view of the host range than presently indicated.  相似文献   

11.
Inland aquatic ecosystems are vulnerable to both climate change and biological invasion at broad spatial scales. The aim of this study was to establish the current and future potential distribution of three invasive plant taxa, Egeria densa, Myriophyllum aquaticum and Ludwigia spp., in their native and exotic ranges. We used species distribution models (SDMs), with nine different algorithms and three global circulation models, and we restricted the suitability maps to cells containing aquatic ecosystems. The current bioclimatic range of the taxa was predicted to represent 6.6–12.3% of their suitable habitats at global scale, with a lot of variations between continents. In Europe and North America, their invasive ranges are predicted to increase up to two fold by 2070 with the highest gas emission scenario. Suitable new areas will mainly be located to the north of their current range. In other continents where they are exotic and in their native range (South America), the surface areas of suitable locations are predicted to decrease with climate change, especially for Ludwigia spp. in South America (down to ?55% by 2070 with RCP 8.5 scenario). This study allows to identify areas vulnerable to ongoing invasions by aquatic plant species and thus could help the prioritisation of monitoring and management, as well as contribute to the public awareness regarding biological invasions.  相似文献   

12.
North America has a growing problem with invasive aquatic plants. At every level of the aquatic food web, long-standing checks and balances have become dramatically eroded by the introduction of non-native species. The northeastern United States contains thousands of diverse freshwater habitats, highly heterogeneous in geology and locale, where nuisance aquatic plant growth results in decreased lake water quality, interference with recreational access, degraded flood control structures, and impacts to their aesthetic quality. Early infestation and spread of exotic species is often poorly documented at local and state levels. Consequently, successful management of these species depends on continuous monitoring and definitive identification by both public officials and waterside homeowners. With new mapping capabilities employing software such as Geographic Information Systems (GIS) coupled with the growing computerization of taxonomic records and online availability of regional herbarium records, we have been able to illustrate the␣temporal and geographic spread of these species, thus enabling aquatic ecologists and managers to make predictions of future infestations. In this paper we evaluate these techniques focusing on three of the most pervasive of exotic aquatic plant species in New York State: Myriophyllum spicatum, Trapa natans and Potamogeton crispus.  相似文献   

13.
The ability of Najas marina L. to thrive in the presence of the submerged hydrophytes (Myriophyllum spicatum L. and Potamogeton lucens L.) and of an emerged hygrophyte (Scirpus litoralis Schard.) was investigated in Tel Aviv, Israel. Najas plants were unaffected by the presence of Potamogeton lucens and Scirpus litoralis, but were significantly suppressed by Myriophyllum. Bilateral negative relationships exist between Najas and Myriophyllum and these seem to be of an allelophatic nature, depending more on the nature of the accompanying species rather than on their mass.  相似文献   

14.
Agami  Moshe  Yoav Waisel 《Hydrobiologia》2002,482(1-3):197-200
The interrelationships between two submerged macrophytes, Najas marina and Myriophyllum spicatum, were investigated. Double-reciprocal analysis was used to distinguish between the possible types of negative relationships. Results have demonstrated that interspecific inhibition was more severe than the intraspecific one. The intensity of inhibition was negatively correlated with the density of the examined species. The mutual inhibitory effect and the pattern of the obtained results suggest that competitive relationships exist between Najas marina and Myriophyllum spicatum.  相似文献   

15.
Distribution and plant mass of aquatic macrophytes, and their relation to environmental conditions was studied in the submontane-colline Slatina river in 2004. Diversity of macrophytes was low, only 8 vascular plants, 3 mosses and group Algae filamentosae were found. Myriophyllum spicatum is dominant species, Fontinalis antipyretica, Rhynchostegium riparioides and Algae filamentosae are frequent. Interactions between flow class, bed material, depth of water and the first three mentioned macrophytes, as well as Jungermannia leiantha were detected. Sparganium erectum prefers more antrophogenic conditions and Myriophyllum spicatum prefers the light. According to cluster analysis, three distinct and ecologically well separated parts of the river were identified. Based on Reference index, poor ecological status for the studied part of the Slatina river was estimated.  相似文献   

16.
The effects of NaCl on the H2O2 content and the activities of catalase (CAT) and superoxide dismutase (SOD) were studied in diverse group of plants, such as a unicellular alga, Chlorella sp., an aquatic macrophyte, Najas graminea, and a mangrove plant, Suaeda maritima, all showing high tolerance to NaCl. Significant accumulation of H2O2 was observed in all the tested plants upon their exposure to 255 mM NaCl. The activity of both CAT and SOD increased significantly in response to the NaCl treatment. Growing the plants in presence of 255 mM NaCl also resulted in the synthesis of new isoforms of both CAT and SOD.  相似文献   

17.
1. Invertebrates and aquatic plants often play a key role in biogeochemical processes occurring at the water–sediment interface of aquatic ecosystems. However, few studies have investigated the respective influences of plants and bioturbating animals on ecological processes (nutrient fluxes, benthic oxygen uptake, microbial activities) occurring in freshwater sediments. 2. We developed a laboratory experiment in aquaria to quantify the effects of (i) one invertebrate acting as a bioturbator (Tubifex tubifex); (ii) one submersed plant with a high sediment‐oxygenating potential (Myriophyllum spicatum) and (iii) one submersed plant with a low sediment‐oxygenating potential (Elodea canadensis). 3. The tubificid worms significantly increased the fluxes of nitrogen at the water–sediment interface (influx of nitrate, efflux of ammonium), whereas the two plant species did not have significant influences on these nitrogen fluxes. The differences in nitrogen fluxes between tubificid worms and plants were probably due to the bioirrigation process caused by T. tubifex, which increased water exchanges at the water–sediment interface. Tubifex tubifex and M. spicatum produced comparable reductions of nutrient concentrations in pore water and comparable stimulations of benthic oxygen uptake and microbial communities (percentages of active eubacteria and hydrolytic activity) whereas E. canadensis had a very weak influence on these variables. These differences between the two plants were due to their contrasting abilities to increase oxygen in sediments by radial oxygen losses (release of oxygen from roots). 4. Our study suggests that the bioirrigation process and radial oxygen loss are major functional traits affecting biogeochemical functioning at the water–sediment interface of wetlands.  相似文献   

18.
Breakdown and nutrient dynamics of submerged macrophytes were studied in Myall Lake, Australia. Mass loss of Myriophyllum sulsagineum was the lowest (64.90%) among the studied macrophytes during the 322 days followed by charophytes (60.79%), whereas Najas marina and Vallisneria gigantea lost 91.15 and 86.02% of their respective initial mass during that time. The overall exponential breakdown rates of Najas marina and Vallisneria gigantea were similar, with k-values of 0.24 and 0.23 day−1, respectively. These rates were significantly higher than the break down rates of charophytes (0.007 day−1) and M. sulsagineum (0.008 day−1). During growth phase, water column depicted lower nutrient concentrations while during decay period, significant increase in water column nutrients resulted. Release of nutrients from decomposing macrophytes and incorporation of these nutrients into sedimentary phase as well as uptake of nutrients by the growing macrophytes, can present a considerable cycling pathway of nutrients in Myall lake system. The results of this study suggest that different submerged macrophytes may differ appreciably in quality and may exhibit different decomposition rates, patterns and nutrient dynamics in aquatic ecosystems in general, and Myall lakes in particular.  相似文献   

19.
20.
  1. Biological invasions can greatly alter ecological communities, affecting not only the diversity and abundance but also composition of invaded assemblages. This is because invaders’ impacts are mediated by characteristics of resident species: some may be highly sensitive to invader impacts while others are unaffected or even facilitated. In some cases, this can result in invasive species promoting further invasions; in particular, herbivory by introduced animals has been shown to disproportionately harm native plants, which can indirectly benefit non-native plants. Here, we investigated whether such patterns emerged through the effects of an invasive fish species on lake plant communities.
  2. Specifically, we tested whether invasion of Minnesota (U.S.A.) lakes by Cyprinus carpio (common carp), an omnivorous, benthivorous fish known to reduce abundance and richness of aquatic plants, differentially affected native versus non-native plant species. We applied statistical models to a large, long-term monitoring dataset (206 macrophyte taxa recorded in 913 lakes over a 20-year time period) to test whether carp altered community composition, to identify which macrophyte species were most sensitive to carp and determine whether species characteristics predicted carp sensitivity, and to characterise consequences of carp invasion on lake-level vegetation attributes.
  3. We found that carp exerted strong selective pressure on community composition. Native macrophytes, those with a more aquatic growth form, and those considered less tolerant of disturbance (i.e. higher coefficients of conservatism) were more sensitive to carp. Conversely, no introduced macrophytes exhibited sensitivity to carp and all had higher probabilities of occurrence as carp abundance increased. The net effect of carp invasion was a shift toward less species-rich plant communities characterised by more non-native and disturbance-tolerant species.
  4. These results have several implications for conservation and management. First, they reinforce the need to prevent further spread of carp outside of their native range. Where carp have already established, their control should be incorporated into efforts to restore aquatic vegetation; this may be an essential step for recovering particular plant species of high conservation importance. Furthermore, reducing carp abundance could have ancillary benefits of reducing dominance by invasive plant species. Lastly, where carp cannot be eliminated, managers should target native macrophytes that are relatively tolerant of carp in shoreline plantings and other revegetation efforts.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号