首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of Haemonchus contortus to oxidative stress in vitro was examined by measuring catalase activities in adult and L4 stage worms exposed to hydrogen peroxide generated by a glucose/glucose oxidase system. Adult nematodes showed increases of up to 2.3-fold in catalase activity after 42 h exposure to the peroxide. L4 nematodes showed up to 4.6-fold induction. A two-stage dose-response was apparent, with catalase activities increasing as the peroxide levels increased, before a return to control levels at higher peroxide concentrations, most likely reflecting a balance between induction and toxicity of the inducing agent itself. Adult nematodes exposed to low levels of peroxide for 24h (hence, having enhanced catalase activities) showed an ability to tolerate subsequent exposure to toxic levels of the peroxide compared to worms with no pre-exposure. An increase of up to approximately threefold in the LC(50) of the hydrogen peroxide generating system was observed after hydrogen peroxide pre-exposure. This indicates that exposure to low oxidant levels lead to an increase in defensive enzyme activities, which allows the nematode to survive subsequent oxidant threats more effectively. The ability of H contortus to increase its catalase activity may be crucial in allowing it to respond to the production of reactive oxygen species by host phagocytes in vivo.  相似文献   

2.
1988. Infection with Haemonchus contortus in sheep and the role of adaptive immunity in selection of the parasite. International Journal for Parasitology 18: 1071–1075. A series of infections with Haemonchus contortus in immune and non-immune sheep gave no indication that successive generations of the parasite were selected for the enhanced ability to cope with host-protective immunity. Separate subpopulations of the parasite were passaged through individual immune sheep and were compared at each generation with infections by the pooled populations in an additional panel of immune sheep. The experiment ceased when infections became too low to allow the production of sufficient infective larvae for reinfection. Results showed that H. contortus is unable to make adjustments to the immune status of a given sheep. Attention is thus diverted from the process through which host identifies self and non-self and from the histocompatibility system as the targets for possible antigen-mimicry by H. contortus.  相似文献   

3.
We aimed to determine the status of iron in mediating oxidant-induced damage to cultured bovine aortic endothelial cells. Chromium-51-labeled cells were exposed to reaction mixtures of xanthine oxidase/hypoxanthine and glucose oxidase/glucose; these produce superoxide and hydrogen peroxide, or hydrogen peroxide, respectively. Xanthine oxidase caused a dose dependent increase of 51Cr release. Damage was prevented by allopurinol, oxypurinol, and extracellular catalase, but not by superoxide dismutase. Prevention of xanthine oxidase-in-duced damage by catalase was blocked by an inhibitor of catalase, aminotriazole. Glucose oxidase also caused a dose-dependent increase of 51Ci release. Glucose oxidase-induced injury, which was catalase-inhibitable, was not prevented by extracellular superoxide dismutase. Both addition of and pretreatment with deferoxamine (a chelator of Fe3+) prevented glucose oxidase-induced injury. The presence of phenanthroline (a chelator of divalent Fe2+) prevented glucose oxidase-induced 51Cr release, whereas pretreatment with the agent did not. Apotransferrin (a membrane impermeable iron binding protein) failed to influence damage. Neither deferoxamine nor phenanthroline influenced cellular antioxidant defenses, or inhibited lysis by non-oxidant toxic agents. Treatment with allopurinol and oxypurinol, which inhibited cellular xanthine oxidase, failed to prevent glucose oxidase injury. We conclude that (1) among the oxygen species extracellularly generated by xanthine oxidase/hypoxanthine, hydrogen peroxide induces damage via a reaction on cellular iron; (2) deferoxamine and phenanthroline protect cells by chelating Fe3+ and Fe2+, respectively; and (3) reduction of cellular stored iron (Fe3+) to Fe2+ may be a prerequisite for mediation of oxidantinduced injury, but this occurs independently of extracellular superoxide or cellular xanthine oxidase-derived superoxide. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    The oxidized intermediates generated upon exposure of Aspergillus niger catalase to hydrogen peroxide and superoxide radical fluxes were examined with UV-visible spectrophotometry. Hydrogen peroxide and superoxide radical were generated by means of glucose/glucose oxidase and xanthine/xanthine oxidase systems. Serial overlay of absorption spectra in the Soret (350-450 nm) and visible regions (450-700 nm) showed that the decomposition of hydrogen peroxide by the catalase of Aspergillus niger can proceed through one of two distinct pathways: (i), the normal “catalatic” cycle consisting of ferric catalase → Compound I → ferric catalase; (ii), a longer cycle where superoxide radical transforms Compound I to Compound II which is then converted to the resting ferric enzyme via Compound III. The latter sequence of reactions ensures that the catalase of Aspergillus niger restores entirely its activity upon exposure to low levels of superoxide radicals due to the actions of oxidases.  相似文献   

    5.
    The genetic toxicity of active oxygen species produced during the enzymic oxidation of xanthine has been investigated using Chinese hamster ovary (CHO) cells. Incubation of cells with xanthine plus xanthine oxidase resulted in extensive chromosome breakage and sister-chromatid exchange and gave a small increase in frequency of thioguanine-resistant cells (HGPRT test). Inclusion of superoxide dismutase or catalase in the xanthine/xanthine oxidase system inhibited chromosome breakage, whereas only catalase prevented SCE and mutant induction. It is concluded that hydrogen peroxide is responsible for most of the genetic effects observed in CHO cells exposed to xanthine/xanthine oxidase but that superoxide plays a key role in chromosome breakage.  相似文献   

    6.
    The interaction between Trypanosoma congolense and Haemonchus contortus was studied in 5 groups of 8 Djallonké sheep. Two groups received a single infection with either H. contortus or T. congolense, and 2 groups were infected with T. congolense followed by H. contortus (TH) or vice versa (HT). One group was kept as uninfected controls. Mortality due to infection was observed only in the dual infection groups. In the TH group, the effects were more acute whereas in the HT group they were more chronic. No significant differences in weight gain could be demonstrated between infected and control groups. Djallonké sheep are able to withstand a single infection with either T. congolense or H. contortus, which confirms their trypanotolerant nature and provides preliminary indication of resistance against helminth infections. However, when exposed to successive infections with both parasites, some of the animals lose this tolerance.  相似文献   

    7.
    We examined the protective effect of cellular superoxide dismutase against extracellular hydrogen peroxide in cultured bovine aortic endothelial cells. 51Cr-labeled cells were exposed to hydrogen peroxide generated by glucose oxidase/glucose. Glucose oxidase caused a dose-dependent increase of 51Cr release. Pretreatment with diethyldithiocarbamate enhanced injury induced by glucose oxidase, corresponding with the degree of inhibition of endogenous superoxide dismutase activity. Inhibition of cellular superoxide dismutase by diethyldithiocarbamate was not associated either with alteration of other antioxidant defenses or with potentiation of nonoxidant injury. Enhanced glucose oxidase damage by diethyldithiocarbamate was prevented by chelating cellular iron. Inhibition of cellular xanthine oxidase neither prevented lysis by hydrogen peroxide nor diminished enhanced susceptibility by diethyldithiocarbamate. These results suggest that, in cultured endothelial cells: 1) cellular superoxide is involved in mediating hydrogen peroxide-induced damage; 2) superoxide, which would be generated upon exposure to excess hydrogen peroxide independently of cellular xanthine oxidase, promotes the Haber-Weiss reaction by initiating reduction of stored iron (Fe3+) to Fe2+; 3) cellular iron catalyzes the production of a more toxic species from these two oxygen metabolites; 4) cellular superoxide dismutase plays a critical role in preventing hydrogen peroxide damage by scavenging superoxide and consequently by inhibiting the generation of the toxic species.  相似文献   

    8.
    A new series of amino-acetonitrile derivatives (AAD) have been discovered that exhibit high anthelmintic activity against parasitic nematode species such as Haemonchus contortus and Trichostrongylus colubriformis. Significantly, these compounds also demonstrate activity against nematode strains resistant to the currently available broad-spectrum anthelmintics. The discovery, synthesis, structure–activity relationship and biological results are presented.  相似文献   

    9.
    Microglia are resident brain macrophages that become activated and proliferate following brain damage or stimulation by immune mediators, such as IL-1beta or TNF-alpha. We investigated the mechanisms by which microglial proliferation is regulated in primary cultures of rat glia. We found that basal proliferation of microglia was stimulated by proinflammatory cytokines IL-1beta or TNF-alpha, and this proliferation was completely inhibited by catalase, implicating hydrogen peroxide as a mediator of proliferation. In addition, inhibitors of NADPH oxidase (diphenylene iodonium or apocynin) also prevented microglia proliferation, suggesting that this may be the source of hydrogen peroxide. IL-1beta and TNF-alpha rapidly stimulated the rate of hydrogen peroxide produced by isolated microglia, and this was inhibited by diphenylene iodonium, implying that the cytokines were acting directly on microglia to stimulate the NADPH oxidase. Low concentrations of PMA or arachidonic acid (known activators of NADPH oxidase) or xanthine/xanthine oxidase or glucose oxidase (generating hydrogen peroxide) also increased microglia proliferation and this was blocked by catalase, showing that NADPH oxidase activation or hydrogen peroxide was sufficient to stimulate microglia proliferation. In contrast to microglia, the proliferation of astrocytes was unaffected by the presence of catalase. In conclusion, these findings indicate that microglial proliferation in response to IL-1beta or TNF-alpha is mediated by hydrogen peroxide from NADPH oxidase.  相似文献   

    10.
    Oxidant injury to the alveolar epithelium can be mediated by exposure to oxidant gases such as O2 at high concentrations and O3, inflammatory cell-derived reactive O2 species, and the intracellular metabolism of xenobiotics such as paraquat. An in vitro model of alveolar epithelial oxidant injury was developed based on exposure of cultured rat type II pneumocytes to superoxide and hydrogen peroxide (H2O2) enzymatically generated in the culture medium. Cytotoxicity was assessed by the release of lactate dehydrogenase (LDH) into the culture medium, which was a more reliable indicator of damage than release of 51Cr by prelabeled cells. Incubation of cells for 6-8 h with xanthine plus xanthine oxidase and glucose plus glucose oxidase induced the release of greater than 50% of total intracellular LDH. Oxidant exposure also resulted in significant detachment of cells from culture dishes. Modulation of oxidant damage was accomplished using liposomes as vectors for the delivery of catalase. Treatment of cells with catalase liposomes for 2 h resulted in augmentation of cellular catalase specific activities up to 631% of controls. Catalase was partitioned into intracellular and surface-associated compartments in catalase liposome-treated cells. Partial and complete protection against oxidant injury, induced by xanthine plus xanthine oxidase and glucose plus glucose oxidase, respectively, was achieved by pretreatment of cells with catalase liposomes. LDH release during oxidant exposure was inversely related to augmentation of cellular catalase activities. Catalase liposome-treated cells also exhibited an enhanced ability to scavenge enzymatically generated H2O2 from the culture medium. These observations suggest a useful approach to modulation of alveolar injury induced by reactive O2 species.  相似文献   

    11.
    Catalase functioned exclusively to degrade hydrogen peroxide in a reaction mixture containing methanol and hydrogen peroxide, while, when the enzyme was coupled with glucose oxidase, successful conversion of methanol to formaldehyde occurred at the optimized ratio of glucose oxidase to catalase: activity, 1.0 × 10 -3; number of molecules, 1.3; protein content, 1. These values in the coupled system were very similar to the ratio of alcohol oxidase to catalase in peroxisomes, one of the subcellular organelles from a methanol-assimilating yeast, Kloeckera sp. 2201, in which these enzymes were coupled to metabolize methanol efficiently. The presence of the optimum ratio in the coupled system in vitro was confirmed by the kinetic analysis of the expression of the peroxidatic activity of catalase coupled with glucose oxidase. Construction of the immobilized system of the coupled enzymes at the optimum ratio demonstrated that the oxidation of methanol through the peroxidatic function of catalase could be continuously and stably operated, the results indicating the usefulness of the system as a model of yeast peroxisomes. Thus, the coupled reaction with glucose oxidase brought out the latent function of catalase, which could not be expected in the system including only catalase.  相似文献   

    12.
    The identification of genes associated with anthelmintic resistance can be facilitated in Haemonchus contortus by the ability of this species to hybridise with Haemonchus placei. Although the hybrid males are sterile, the lines can be rescued by backcrossing the females to either parental species. Resistance genes can be retained in Haemonchus hybrids, while the unwanted contortus background is removed through backcrossing to H. placei and anthelmintic selection of the progeny. Under this selection, genes involved in resistance would retain the H. contortus nucleotide sequence, while those that are not would either be H. placei or a random mixture of both, depending on the amount of backcrossing that had occurred. The first candidate gene to be tested in this system was a Haemonchus P-glycoprotein, hcpgp-1. hcpgp-1 was amplified, cloned and sequenced from H. contortus and H. placei. Two restriction sites were then identified in the sequenced product; one specific to H. contortus hcpgp-1 and the other found only in the H. placei gene. These genes were identified from macrocyclic lactone selected and non-selected worms by restricting PCR products from individual worms. Fitted occurrence of the H. contortus allele was 49% of unselected worms and 69% of macrocyclic lactone selected worms. The probability of this percentage occurring by chance was P=0.006. Thus macrocyclic lactone selection was acting to increase the percentage of hcpgp-1 from macrocyclic-lactone-resistant CAVRS.  相似文献   

    13.
    Tannin-rich forages offer an alternative to anthelmintic chemicals to control gastrointestinal nematodes. However, the mode of action of such bioactive plants still needs to be assessed. Previous studies have shown that extracts of tannin-rich plants interfere with the first phase of host invasion, i.e., the exsheathment of infective larvae (L3s). In the current study, we examined the hypothesis that exposure to tannins could also affect the second phase of larval establishment, i.e., the tissue association/penetration of the exsheathed L3s into the digestive mucosae. An in vitro direct challenge technique using fundic explants was applied in this study. The main parasite model was Haemonchus contortus. The objectives were to verify: (i) whether a modification of the association/penetration of L3s with the mucosae occurred after contact with sainfoin extract; (ii) whether this is a dose-dependent phenomenon; (iii) whether tannins were responsible for these effects; (iv) whether these effects were dependent on the parasite species; and (v) how the biochemical structure of tannins might influence these effects. Following 3 h contact with sainfoin extract at 1,200 μg/ml, the penetration of exsheathed L3s of H. contortus and Teladorsagia circumcincta into fundic explants was significantly reduced. Moreover, a dose–response relationship was found for H. contortus. For both nematodes, the changes were totally alleviated after addition of polyvinyl polypyrrolidone, an inhibitor of tannins, to the sainfoin extract, suggesting that tannins play a major role in the observed effects. Comparison of results obtained with different monomers of condensed tannins confirms a relationship between structure and activity, the prodelphinidin monomers and galloyl-derivatives being more effective than the procyanidin monomers. Combined with the delay or the inhibition of larval exsheathment previously shown, these effects could explain how tanniniferous plants reduce the establishment of infective larvae in small ruminants.  相似文献   

    14.
    Although reactive oxygen species are believed to participate in postischemic renal injury, the actual chemical species involved and the role of endogenous scavenging systems in protecting against injury requires additional study. Hydrogen peroxide, which derives from superoxide radical, is toxic and also yields toxic hydroxyl radical. 3-amino-1,2,4-triazole reacts with catalase to form irreversibly inactivated catalase only in the presence of hydrogen peroxide. We made use of this chemical reaction both to determine whether inhibition of the hydrogen peroxide-scavenging enzyme catalase would influence ischemic renal injury and to measure hydrogen peroxide production rates after ischemia. Sprague-Dawley rats were given aminotriazole (100 mg/kg) one hour before 40 min of renal ischemia. Twenty-four h after ischemia GFR had decreased to 300 microL/min in control animals and to 50 microL/min in aminotriazole-treated animals. Histologic evidence of injury was also worse in catalase-inhibited animals. To measure hydrogen peroxide production rates aminotriazole was given 60 min before measurement of renal catalase activity. In control animals, aminotriazole caused a 53.4% decrease in catalase activity. In animals subjected to 40 min of ischemia plus either 10 or 60 min of reflow catalase activity decreased by 33.9 and 49.5% (not significantly different from control). Thus, when measured by this method total renal hydrogen peroxide production was considerable but was not increased by ischemia. However, in isolated proximal tubule segments 60 min of anoxia and 30 min of reoxygenation caused a 42% increase in H2O2 released into the incubation medium. In summary, inhibition of catalase before ischemia led to exacerbation of ischemic injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

    15.
    1988. Resistance of young lambs to Haemonchus contortus infection, and its loss following anthelmintic treatment. International Journal for Parasitology 18: 1107–1109. A comparison of worm burdens of grazing Merino lambs that were untreated, treated once and allowed to graze for 2 weeks, or given suppressive anthelmintic treatment until their final 2 weeks on pasture, showed that resistance to reinfection with Ostertagia circumcincta and Trichostrongylus colubriformis did not develop until the lambs were about 8 months old. By contrast, there was clear evidence that untreated lambs, but not lambs given one or more treatments, had acquired substantial resistance to infection with Haemonchus contortus by an age of 4 months.  相似文献   

    16.
    An H2O2-resistant variant (OC14) of the HA1 Chinese hamster fibroblast cell line which demonstrates a 20-fold increase in catalase activity was utilized in the study of mechanisms responsible for cellular resistance to hydrogen peroxide, oxygen, and 4-hydroxy-2-nonenal toxicity. HA1 and OC14 cells were treated with 9 mM aminotriazole which resulted in a 60 to 80% reduction in catalase activity. Pretreatment with aminotriazole resulted in significant sensitization to the toxicity of 1-h exposures to exogenously applied H2O2, which was proportional to the reduction in catalase activity. Treatment with aminotriazole produced significant sensitization to the toxicity of 95% O2 after 45 h of O2 exposure but no sensitization to the toxicity of a 1-h exposure to 50 microM 4-hydroxy-2-nonenal. Inhibition of catalase activity by aminotriazole had no effect on the metabolism of 4-hydroxy-2-nonenal by either cell line tested. These results support the conclusion that in H2O2-resistant cells, catalase activity is a major determinant of cellular resistance to H2O2 toxicity, whereas catalase activity has a limited role in cellular resistance to an acute exposure to 95% O2 and is unrelated to cellular resistance to 4-hydroxy-2-nonenal.  相似文献   

    17.
    Electrochemical sensors based on immobilised cytochrome c or superoxide dismutase for the measurement of superoxide radical production by stimulated neutrophils are described. Cytochrome c was immobilised covalently at a surface-modified gold electrode and by passive adsorption to novel platinised activated carbon electrodes (PACE). The reoxidation of cytochrome c at the electrode surface upon reduction by superoxide was monitored using both xanthine/xanthine oxidase and stimulated neutrophils as sources of the free radical. In addition, bovine Cu/Zn superoxide dismutase was immobilised to PACE by passive adsorption and superoxide, generated by xanthine/xanthine oxidase, detected by oxidation of hydrogen peroxide produced by the enzymic dismutation of the superoxide radical. A biopsy needle probe electrode based on cytochrome c immobilised at PACE and suitable for continuous monitoring of free radical production was constructed and characterised.  相似文献   

    18.
    We have shown, in a preliminary report, that macrophages can induce strand breaks in the DNA of co-cultured tumor cells (Chong et al., 1988). The present study is designed to determine if oxygen-centered species generated by the cell-free enzyme-substrate combination of hypoxanthine and xanthine oxidase can induce similar lesions and to identify the specific mediator(s). We report that co-incubation of murine mammary tumor cell lines with hypoxanthine and xanthine oxidase leads to the induction of DNA-strand breaks as determined by fluorescence analysis of DNA unwinding (FADU) assay or alkaline elution techniques. This damage is preventable by catalase which removes hydrogen peroxide but no protection is provided by agents to remove or prevent the formation of superoxide anion (superoxide dismutase), or hydroxyl radical (mannitol or the iron chelator o-phenanthroline). Likewise, cyclooxygenase or lipoxygenase inhibitors of arachidonate metabolism (indomethacin, nordihydroguaiaretic acid, caffeic acid) or bromophenacyl bromide do not alter the degree of DNA scission. Treatment with higher doses of oxygen species leads to significant toxicity as determined by evaluation of cell growth potential or colony-forming ability. Again, toxicity is prevented only by the presence of catalase. Tumor cells are able to rejoin strand breaks at lower, less toxic doses. When comparing different tumor cell subpopulations at various stages of progression, i.e., metastatic vs. nonmetastatic, for sensitivity to hydrogen peroxide-induced strand breakage, we found that at lower concentrations (less than 5μM) metastatic populations are sensitive whereas nonmetastatic populations exhibit no significant breakage. At higher concentrations of hydrogen peroxide, all lines were sensitive, suggesting that a lower threshold of sensitivity may exist for more progressed tumour cell lines.  相似文献   

    19.
    The synthesis of hyaluronic acid by bovine articular cartilage in culture was inhibited after treatment with xanthine oxidase and hypoxanthine. Through the use of catalase, superoxide dismutase and the specific iron chelator diethylenetriaminepentaacetic acid, the active species responsible for inhibition was shown to be hydrogen peroxide. Hydrogen peroxide generated by glucose oxidase was also inhibitory. Some recovery of hyaluronic synthesis was evident after a further period of culturing. Proteoglycan synthesis was inhibited in parallel with hyaluronic acid synthesis.  相似文献   

    20.
    The mechanism of vitamin C-induced sister-chromatid exchanges in cultured mammalian cells was studied. Chinese hamster ovary cells, when exposed to an enzymatic oxygen radical-generating system (xanthine oxidase plus hypoxanthine), develop increased numbers of sister-chromatid exchanges. Inclusion of ascorbate (greater than or equal to 0.1 mM) in these incubations resulted in an augmentation of this effect. Superoxide dismutase (100 microliter/ml) and catalase (220 microliter/ml) caused a significant reduction in the number of sister-chromatid exchanges induced by xanthine oxidase, hypoxanthine and vitamin C. Their heat-inactivated counterparts had no effect. These results confirm that vitamin C (greater than or equal to 0.1 mM) potentiates the genetic toxicity of oxygen radicals and that this effect is mediated by toxic oxygen intermediates.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号