首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain further insight into the pathogenesis of amyloidosis and develop therapeutic strategies to inhibit fibril formation we investigated: 1) the relationship between intrinsic physical properties (thermodynamic stability and hydrogen-deuterium (H-D) exchange rates) and the propensity of human immunoglobulin light chains to form amyloid fibrils in vitro; and 2) the effects of extrinsically modulating these properties on fibril formation. An amyloid-associated protein readily formed amyloid fibrils in vitro and had a lower free energy of unfolding than a homologous nonpathological protein, which did not form fibrils in vitro. H-D exchange was much faster for the pathological protein, suggesting it had a greater fraction of partially folded molecules. The thermodynamic stabilizer sucrose completely inhibited fibril formation by the pathological protein and shifted the values for its physical parameters to those measured for the nonpathological protein in buffer alone. Conversely, urea sufficiently destabilized the nonpathological protein such that its measured physical properties were equivalent to those of the pathological protein in buffer, and it formed fibrils. Thus, fibril formation by light chains is predominantly controlled by thermodynamic stability; and a rational strategy to inhibit amyloidosis is to design high affinity ligands that specifically increase the stability of the native protein.  相似文献   

2.
Amyloid fibrils are associated with sulfated glycosaminoglycans in the extracellular matrix. The presence of sulfated glycosaminoglycans is known to promote amyloid formation in vitro and in vivo, with the sulfate groups playing a role in this process. In order to understand the role that sulfate plays in amyloid formation, we have studied the effect of salts from the Hofmeister series on the protein structure, stability and amyloid formation of an amyloidogenic light chain protein, AL-12. We have been able to show for the first time a direct correlation between protein stability and amyloid formation enhancement by salts from the Hofmeister series, where SO42− conferred the most protein stability and enhancement of amyloid formation. Our study emphasizes the importance of the effect of ions in the protein bound water properties and downplays the role of specific interactions between the protein and ions.  相似文献   

3.
Understanding the initial steps of protein aggregation leading to the formation of amyloid fibrils remains a challenge. Here, the kinetics of such a process is determined for a misfolding protein model, ADA2h. The double nature of the very early kinetics suggests a step model of aggregation, where the denatured polypeptide folds into an aggregated beta-intermediate that subsequently reorganises into a more organised beta-sheet-richer structure that finally results in amyloid fibre formation. To determine the regions of the protein involved in amyloidosis, we have analysed a series of mutants previously made to study ADA2h folding. Using the algorithm TANGO, we have designed mutants that should enhance or decrease aggregation. Experimental analysis of the mutants shows that the C terminus of the molecule (comprising the last and edge beta-strand) is the major contributor to amyloid fibril formation, in good agreement with theoretical predictions. Comparison with proteins with similar topology reveals that family folds do not necessarily share the same principles of protein folding and/or aggregation.  相似文献   

4.
In primary (light chain-associated) amyloidosis, immunoglobulin light chains deposit as amyloid fibrils in vital organs, especially the kidney. Because the kidney contains high concentrations of urea that can destabilize light chains as well as solutes such as betaine and sorbitol that serve as protein stabilizers, we investigated the effects of these solutes on in vitro amyloid fibril formation and thermodynamic stability of light chains. Two recombinant light chain proteins, one amyloidogenic and the other nonamyloidogenic, were used as models. For both light chains, urea enhanced fibril formation by reducing the nucleation lag time and diminished protein thermodynamic stability. Conversely, betaine or sorbitol increased thermodynamic stability of the proteins and partially inhibited fibril formation. These solutes also counteracted urea-induced reduction in protein thermodynamic stability and accelerated fibril formation. Betaine was more effective than sorbitol. A model is presented to explain how the thermodynamic effects of the solutes on protein state equilibria can alter nucleation lag time and, hence, fibril formation kinetics. Our results provide evidence that renal solutes control thermodynamic and kinetic stability of light chains and thus may modulate amyloid fibril formation in the kidney.  相似文献   

5.
Using atomic force microscopy (AFM) we investigated the interaction of amyloid beta (Aβ) (1–42) peptide with chemically modified surfaces in order to better understand the mechanism of amyloid toxicity, which involves interaction of amyloid with cell membrane surfaces. We compared the structure and density of Aβ fibrils on positively and negatively charged as well as hydrophobic chemically-modified surfaces at physiologically relevant conditions. We report that due to the complex distribution of charge and hydrophobicity amyloid oligomers bind to all types of surfaces investigated (CH3, COOH, and NH2) although the charge and hydrophobicity of surfaces affected the structure and size of amyloid deposits as well as surface coverage. Hydrophobic surfaces promote formation of spherical amorphous clusters, while charged surfaces promote protofibril formation. We used the nonlinear Poisson-Boltzmann equation (PBE) approach to analyze the electrostatic interactions of amyloid monomers and oligomers with modified surfaces to complement our AFM data.  相似文献   

6.
Hu D  Qin Z  Xue B  Fink AL  Uversky VN 《Biochemistry》2008,47(33):8665-8677
Light chain amyloidoses arise from the overproduction and abnormal deposition of the immunoglobulin light chain in various organs. LEN is the variable domain of an immunoglobulin light chain originally isolated from the urine of a patient suffering from multiple myeloma, with no sign of renal dysfunction or amyloidosis. LEN was shown to form fibrils in vitro under mildly destabilizing conditions. In this work, we investigated the changes induced by methionine oxidation in the structural properties, conformational stability, and aggregation behavior of immunoglobulin light chain domain LEN. We established that LEN was well-protected from oxidation in its native state, but successful oxidation was achieved in the presence of 4 M GuHCl. Oxidation induced noticeable structural changes in LEN and destabilized this protein. The methionine-oxidized LEN preferred to form amorphous aggregates instead of fibrils. The results indicated that the LEN oxidation may play an important role in amorphous deposition of the protein, but not in its fibrillation.  相似文献   

7.
Quasielastic light scattering spectroscopy (QLS) is an optical method for the determination of diffusion coefficients of particles in solution. Here we discuss the principles of QLS and explain how the distribution of particle sizes can be reconstructed from the measured correlation function of scattered light. Non-invasive observation of the temporal evolution of particle sizes provides a powerful tool for studying protein assembly. We illustrate practical applications of QLS with examples from studies of fibril formation of the amyloid beta-protein.  相似文献   

8.
Myoglobin is an alpha-helical globular protein that contains two highly conserved tryptophan residues located at positions 7 and 14 in the N-terminal region of the protein. Replacement of both indole residues with phenylalanine residues, i.e. W7F/W14F, results in the expression of an unstable, not correctly folded protein that does not bind the prosthetic group. Here we report data (Congo red and thioflavine T binding assay, birefringence, and electron microscopy) showing that the double Trp/Phe replacements render apomyoglobin molecules highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions in which most of the wild-type protein is in the native state. In refolding experiments, like the wild-type protein, the W7F/W14F apomyoglobin mutant formed a soluble, partially folded helical state between pH 2.0 and pH 4.0. A pH increase from 4.0 to 7.0 restored the native structure only in the case of the wild-type protein and determined aggregation of W7F/W14F. The circular dichroism spectrum recorded immediately after neutralization showed that the polypeptide consists mainly of beta-structures. In conclusion, under physiological pH conditions, some mutations that affect folding may cause protein aggregation and the formation of amyloid-like fibrils.  相似文献   

9.
Light chain-associated (AL) amyloidosis is characterized by dominant fibril deposition of the variable domain (VL) of an immunoglobulin light chain, and thus its constant domain (CL) has been considered not to be amyloidogenic. We examined the in vitro fibril formation of the isolated CL in comparison with β2-microglobulin (β2-m), an immunoglobulin domain-like amyloidogenic protein responsible for dialysis-related amyloidosis. Two methods useful for β2-m at neutral pH also induced amyloid fibrils of CL, which were monitored by thioflavin-T binding and electron microscopy (EM). These results suggest that CL plays an important role, more than previously assumed, in the development of AL-amyloidosis.  相似文献   

10.
A lambda light chain, isolated from an immunoglobulin G molecule, was found to reversibly precipitate at low temperatures. This cryoprecipitation was a function of pH, ionic strength, protein concentration, and time as well as temperature. The lambda chain underwent a cooperative conformational change as the temperature was lowered from 26 to 0 degrees C as judged by ultraviolet difference spectroscopy and circular dichroism. Normal lambda chains showed no conformational change. By difference spectroscopy it was possible to calculate the equilibrium constant governing the conformational change. The change was strongly exothermic (delta H approximately -80 kcal mol-1) and accompanied by a large decrease in entropy (delta S approximately -280 eu). The midpoint of the transition was dependent on the initial protein concentration, suggesting that only the noncovalent dimer of the lambda chain exhibited the conformational change. The existence of a monomer-dimer eqiulibrium (KA approximately 4 X 10(5) M-1) was confirmed by sedimentation velocity. No conformational change was observed by circular dichroism at concentrations where greater than 95% of lambda chain was in the form of a monomer. Although high ionic strength inhibited cryoprecipitation, it had no effect on the conformational change. Stabilization of the dimer by forming an interchain disulfide bond between two monomers abolished both the conformational change and cryoprecipitation. A fragment corresponding to the constant region was isolated from both peptic and tryptic digests of the lambda chain. This fragment neither cryoprecipitated nor showed temperature dependence conformational changes. It proved impossible to isolate a fragment corresponding to the variable region. Both qualitative and quantitative models are presented to account for the behavior of the lambda chain at low temperatures.  相似文献   

11.
Saito S  Ando Y  Nakamura M  Ueda M  Kim J  Ishima Y  Akaike T  Otagiri M 《Biochemistry》2005,44(33):11122-11129
Although oxidative stress is said to play an important role in the amyloid formation mechanism in several types of amyloidosis, few details about this role have been described. Amyloid is commonly deposited around the vessels that are the primary site of action of nitric oxide generated from endothelial cells and smooth muscle cells, so nitric oxide may be also implicated in amyloid formation. For this study, we examined the in vitro effect of S-nitrosylation on amyloid formation induced by wild-type transthyretin, a precursor protein of senile systemic amyloidosis, and amyloidogenic transthyretin V30M, a precursor protein of amyloid deposition in familial amyloidotic polyneuropathy. S-Nitrosylation of amyloidogenic transthyretin V30M via the cysteine at position 10 was 2 times more extensive than that of wild-type transthyretin in a nitric oxide-generating solution. Both wild-type transthyretin and amyloidogenic transthyretin V30M formed amyloid fibrils under acidic conditions, and S-nitrosylated transthyretins exhibited higher amyloidogenicity than did unmodified transthyretins. Moreover, S-nitrosylated amyloidogenic transthyretin V30M formed more fibrils than did S-nitrosylated wild-type transthyretin. Structural studies revealed that S-nitrosylation of amyloidogenic transthyretin V30M induced a change in its conformation, as well as instability of the tetramer conformation. These results suggest that the nitric oxide-mediated modification of transthyretin, especially variant transthyretin, may play an important role in amyloid formation in senile systemic amyloidosis and familial amyloidotic polyneuropathy.  相似文献   

12.
The lack of understanding of amyloid fibril formation at the molecular level is a major obstacle in devising strategies to interfere with the pathologies linked to peptide or protein aggregation. In particular, little is known on the role of intermediates and fibril elongation pathways as well as their dependence on the intrinsic tendency of a polypeptide chain to self-assembly by β-sheet formation (β-aggregation propensity). Here, coarse-grained simulations of an amphipathic polypeptide show that a decrease in the β-aggregation propensity results in a larger heterogeneity of elongation pathways, despite the essentially identical structure of the final fibril. Protofibrillar intermediates that are thinner, shorter and less structured than the final fibril accumulate along some of these pathways. Moreover, the templated formation of an additional protofilament on the lateral surface of a protofibril is sometimes observed as a collective transition. Conversely, for a polypeptide model with a high β-aggregation propensity, elongation proceeds without protofibrillar intermediates. Therefore, changes in intrinsic β-aggregation propensity modulate the relative accessibility of parallel routes of aggregation.  相似文献   

13.
The results of cell and animal model studies demonstrate that molecular chaperones play an important role in controlling the processes of protein misfolding and amyloid formation in vivo. In addition, chaperones are involved in the appearance, propagation and clearance of prion phenotypes in yeast. The effect of chaperones on amyloid formation has been studied in great detail in recent years in order to elucidate the underlying mechanisms. An important approach is the direct study of effects of chaperones on amyloid fibril formation in vitro. This review introduces the methods and techniques that are commonly used to control and monitor the time course of fibril formation, and to detect interactions between chaperones and fibril-forming proteins. The techniques we address include thioflavin T binding fluorescence and filter retardation assays, size-exclusion chromatography, dynamic light scattering, and biosensor assays. Our aim in this review is to provide guidance on how to embark on study of the effect of chaperones on amyloid fibril formation, and how to avoid common problems that may be encountered, using examples and experience from the authors' lab and from the wider literature.  相似文献   

14.
Amyloid formation has been implicated in a wide range of human diseases, and a diverse set of proteins is involved. There is considerable interest in elucidating the interactions which lead to amyloid formation and which contribute to amyloid fibril stability. Recent attention has been focused upon the potential role of aromatic-aromatic and aromatic-hydrophobic interactions in amyloid formation by short to midsized polypeptides. Here we examine whether aromatic residues are necessary for amyloid formation by islet amyloid polypeptide (IAPP). IAPP is responsible for the formation of islet amyloid in type II diabetes which is thought to play a role in the pathology of the disease. IAPP is 37 residues in length and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. Structural models of IAPP amyloid fibrils postulate that Tyr-37 is near one of the phenylalanine residues, and it is known that Tyr-37 interacts with one of the phenylalanines during fibrillization; however, it is not known if aromatic-aromatic or aromatic-hydrophobic interactions are absolutely required for amyloid formation. An F15L/F23L/Y37L triple mutant (IAPP-3XL) was prepared, and its ability to form amyloid was tested. CD, thioflavin binding assays, AFM, and TEM measurements all show that the triple leucine mutant readily forms amyloid fibrils. The substitutions do, however, decrease the rate of fibril formation and alter the tendency of fibrils to aggregate. Thus, while aromatic residues are not an absolute requirement for amyloid formation by IAPP, they do play a role in the fibril assembly process.  相似文献   

15.
Light chain amyloidosis involves the systemic pathologic deposition of monoclonal light chain variable domains of immunoglobulins as insoluble fibrils. The variable domain LEN was obtained from a patient who had no overt amyloidosis; however, LEN forms fibrils in vitro, under mildly destabilizing conditions. The in vitro kinetics of fibrillation were investigated using a wide variety of probes. The rate of fibril formation was highly dependent on the initial protein concentration. In contrast to most amyloid systems, the kinetics became slower with increasing LEN concentrations. At high protein concentrations a significant lag in time was observed between the conformational changes and the formation of fibrils, consistent with the formation of soluble off-pathway oligomeric species and a branched pathway. The presence of off-pathway species was confirmed by small angle x-ray scattering. At low protein concentrations the structural rearrangements were concurrent with fibril formation, indicating the absence of formation of the off-pathway species. The data are consistent with a model for fibrillation in which a dimeric form of LEN (at high protein concentration) inhibits fibril formation by interaction with an intermediate on the fibrillation pathway and leads to formation of the off-pathway intermediate.  相似文献   

16.
The formation of amyloid and other types of protein fibrils is thought to proceed by a nucleated polymerization mechanism. One of the most important features commonly associated with nucleated polymerizations is a strong dependence of the rate on the concentration. However, the dependence of fibril formation rates on concentration can weaken and nearly disappear as the concentration increases. Using numerical solutions to the rate equations for nucleated polymerization and analytical solutions to some limiting cases, we examine this phenomenon and show that it is caused by the concentration approaching and then exceeding the equilibrium constant for dissociation of monomers from species smaller than the nucleus, a quantity we have named the "supercritical concentration". When the concentration exceeds the supercritical concentration, the monomer, not the nucleus, is the highest-energy species on the fibril formation pathway, and the fibril formation reaction behaves initially like an irreversible polymerization. We also derive a relation that can be used in a straightforward method for determining the nucleus size and the supercritical concentration from experimental measurements of fibril formation rates.  相似文献   

17.
Sharp JS  Forrest JA  Jones RA 《Biochemistry》2002,41(52):15810-15819
We consider the effects that different lipid surfaces have upon the denaturation and subsequent formation of amyloid fibrils of bovine insulin. The adsorption and unfolding kinetics of insulin being adsorbed onto the different lipid surfaces under denaturing conditions are studied using FTIR ATR spectroscopy and are compared to the bulk solution behavior of the protein. Atomic force microscopy studies are also performed to compare the fibrils growing on the different surfaces. This study shows that both the adsorption and unfolding kinetics of insulin can be described by a sum of exponential processes and that different surfaces behave differently, with respect both to one another and to the bulk protein solution. The proteins adsorbed onto the surfaces are observed to have faster unfolding kinetics than those in the bulk, and the fibril-like structures formed at the surfaces are shown to be different in a number of ways from those found in bulk solution. The beta-sheet content and growth kinetics of the adsorbed proteins also differ from those of the bulk system. An attempt is made to describe the observed behavior in terms of simple physical arguments involving adsorption, unfolding, and aggregation of the proteins.  相似文献   

18.
Beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit in the musculo-skeletal system in patients undergoing long-term hemodialysis. How beta(2)m self-assembles in vivo is not understood, since the monomeric wild-type protein is incapable of forming fibrils in isolation in vitro at neutral pH, while elongation of fibril-seeds made from recombinant protein has only been achieved at low pH or at neutral pH in the presence of detergents or cosolvents. Here we describe a systematic study of the effect of 11 physiologically relevant factors on beta(2)m fibrillogenesis at pH 7.0 without denaturants. By comparing the results obtained for the wild-type protein with those of two variants (DeltaN6 and V37A), the role of protein stability in fibrillogenesis is explored. We show that DeltaN6 forms low yields of amyloid-like fibrils at pH 7.0 in the absence of seeds, suggesting that this species could initiate fibrillogenesis in vivo. By contrast, high yields of amyloid-like fibrils are observed for all proteins when assembly is seeded with fibril-seeds formed from recombinant protein at pH 2.5 stabilized by the addition of heparin, serum amyloid P component (SAP), apolipoprotein E (apoE), uremic serum, or synovial fluid. The results suggest that the conditions within the synovium facilitate fibrillogenesis of beta(2)m and show that different physiological factors may act synergistically to promote fibril formation. By comparing the behavior of wild-type beta(2)m with that of DeltaN6 and V37A, we show that the physiologically relevant factors enhance fibrillogenesis by stabilizing fibril-seeds, thereby allowing fibril extension by rare assembly competent species formed by local unfolding of native monomers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号