首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The assignments of1H resonances of the eight aromatic residues of Des-(B26–B30)-insulin are reported, based on pH titration, selective spin decoupling and its 500 MHz1H two-dimensional (2D)-COSY spectrum. The pK values of the three tyrosines A14, A19 and B16 are 10.84, 11.27 and 10.40, respectively. Tyrosine A19 is buried in a hydrophobic environment, while Tyrosine B16 is exposed in a relatively hydrophilic state. Among the three phenylalanines, the ring proton resonances of Phe-B25 undergo abnormal upfield shifts, probably due to the ring currents of the nearby Phe-B24 and Tyr-B16. From this study of the low-field region of1H-NMR spectrum of Des-(B26–B30)-insulin, we conclude that this molecule probably maintains the major structural features of insulin in aqueous solution, but there are some readjustments of the peptide conformation.  相似文献   

2.
The assignment of the aromatic 1H n.m.r. resonances of the four tyrosine residues of bovine 2-zinc insulin is reported, based on double resonance techniques, use of Hahn spin echo pulse sequences and examination of specific derivatives nitrated at tyrosines A14 and A19 as well as des-(B26-B30)-insulin. Titration curves of the four tyrosine residues show that residues A14 and B16 have normal pK' values of 10.3-10.6 in solution, consistent with their accessibility to solvent in monomer and dimer in the crystal. Tyrosine residues A19 and B26 have pK' values of 11.4 and exhibit other features in their titration curves that are consistent with limited accessibility to solvent and a nonpolar environment. The meta protons of residues B16 and B26 both observe the titration of a nearby tyrosine residue, probably A19. Interpretation of the n.m.r. data obtained in solution is consistent with the crystallographic data for the monomer and dimer obtained on insulin crystals [Blundell, Dodson, Hodgkin & Mercola (1972) Adv. Protein Chem. 26, 279-402].  相似文献   

3.
以同核相关二维谱(COSY),双共振技术,去(B_(23)-B_(30))一胰岛素(DOI)测定为基础,分析确定去锌猪胰岛素的三个重要的苯丙氨酸残基B_1 ,B_(24),B_(25)的400 MHz ~1H NMR共振峰及其在不同pH值时的侧链构象.发现在高pH值时,处于单体一单体聚合界面的苯丙氨酸B_(24)侧链构象变化最大.  相似文献   

4.
本文报道了[B10,22-Asp,B25-Tyr-NH2]-去B链羧端五肽胰岛素的制备及其生物活性。结果表明,这一类似物的生物活力比去五肽胰岛素(DPI)的活力高一倍,但却比Gerald所报道的[B10-Asp,B25-Tyr-NH_2]-DPI的活力低很多,说明后者的高活性可能依赖于分子中B22-Arg的存在。  相似文献   

5.
The solution conformation of des-(B26-B30)-insulin (DPI) has been investigated by 1H-NMR spectroscopy. A set of 250 approximate interproton distance restraints, derived from two-dimensional nuclear Overhauser enhancement spectra, were used as the basis of a structure determination using distance geometry (DG) and distance-bound driven dynamics (DDD). Sixteen DG structures were optimized using energy minimization (EM) and submitted to short 5-ps restrained molecular dynamics (RMD) simulations. A further refinement of the DDD structure with the lowest distance errors was done by energy minimization, a prolonged RMD simulation in vacuo and a time-averaged RMD simulation. An average structure was obtained from a trajectory generated during 20-ps RMD. The final structure was compared with the des-(B26-B30)-insulin crystal structure refined by molecular dynamics and the 2-Zn crystal structure of porcine insulin. This comparison shows that the overall structure of des-(B26-B30)-insulin is retained in solution with respect to the crystal structures with a high flexibility at the N-terminal part of the A chain and at the N-terminal and C-terminal parts of the B chain. In the RMD run a high mobility of Gly A1, Asn A21 and of the side chain of Phe B25 is noticed. One of the conformations adopted by des-(B26-B30)-insulin in solution is similar to that of molecule 1 (Chinese nomenclature) in the crystal structure of porcine insulin.  相似文献   

6.
Semisynthetic des-(B27-B30)-insulins with modified B26-tyrosine   总被引:1,自引:0,他引:1  
Semisynthetic des-(B27-B30)-insulins containing modified B26-tyrosine residues were prepared to refine the understanding of the importance of position B26 with regard to biological and structural properties of the hormone. The following shortened insulin analogues were synthesized by trypsin-catalysed peptide-bond formation between the C-terminal amino acid ArgB22 of des-(B23-B30)-insulin and synthetic tetrapeptides as amino components: des-(B27-B30)-insulin, des-(B27-B30)-insulin-B26-methyl ester, -B26-carboxamide with varying C-terminal hydrophobicity of the B-chain, and [Tyr(NH2)B26]-, [Tyr(NO2)B26]-, [Tyr(I2)B26]-, [D-TyrB26]des-(B27-B30)-insulin-B26-carboxamide containing non-proteinogenic amino acids in position B26. Starting from insulin and an excess of synthetic Gly-Phe-Phe-Tyr-OMe as nucleophile, des-(B27-B30)-insulin-B26-methyl ester--the formal transpeptidation product at ArgB22--was formed in one step. Biological in vitro properties (binding to cultured human IM-9 lymphocytes, relative lipogenic potency in isolated rat adipocytes) of all semisynthetic analogues are reported, ranging from slightly decreased to two-fold receptor affinity and nearly three-fold biopotency relative to insulin. If the C-terminal tetrapeptide B27-B30 is removed, full relative insulin activity is still preserved, while the shortening results in the loss of ability to associate in solution. Only after carboxamidation or methyl esterification of TyrB26 the self-association typical of native insulin can be observed, and the CD-spectral effects in the near UV spectrum related to association and hexamerization of the native hormone are qualitatively reestablished. The results of this investigation underline the importance of position B26 to the modulation of hormonal properties and solution structure of the shortened insulins.  相似文献   

7.
It has been confirmed by sedimentation equilibrium and sedimentation velocity experiments that des-(B26-B30)-insulin does not self-associate at neutral pH. Sedimentation equilibrium experiments at pH 7, 25 degrees C were conducted to investigate the effects of the structurally and physiologically important divalent cations Zn2+, Cd2+, Pb2+ and Ca2+ on the aggregation state of des-(B26-B30)-insulin (pig) in solution. It was found that all of these ions bring about association of this insulin analogue; Zn2+ and Cd2+ to a more marked degree than Pb2+ and Ca2+. The predominant species in solutions containing Zn2+ appear to be hexamers and hexameric aggregates, in those containing Cd2+, species up to and including tetramers, and in those containing Pb2+ and Ca2+, monomers and dimers of des-(B26-B30)-insulin appear to be the only species present. The possible significance of these findings, especially in relation to a role for Ca2+ in the action of insulin, is discussed.  相似文献   

8.
摘要:为了研究人类胰岛素B链第26位的酪氨酸对胰岛素和受体之间的结合的影响,包括单独的氨基酸替换或化合物替换的不同的胰岛素类似物被合成,其中化合物替代的类似物的B链C末端都减少了4个氨基酸。在对它们与胰岛素受体的亲和力进行研究中,结果发现它们与胰岛素受体的亲和力没有丢失, HisB26类似物和N-MeHisB26类似物的结合能力与胰岛素相比改变不大,分别是胰岛素的72 %和107 %。N-MeGluB26类似物,AadB26类似物和Phe (4-carboxy) B26类似物的结合能力有很大的提高,分别是130 %, 234 %和160 %。  相似文献   

9.
As part of the total synthesis of [A7,B7-L,L-2,7-diaminosuberoyl]-des-(B26-B30)-insulin B25-amide, an insulin analogue containing a non-cleavable bond between A- and B-chain, the chemical synthesis of the A-chain segments is described. The N-terminal sequence A(1-6), Boc-Gly-Ile-Val-Glu(OBut)-Gln-Cys(SBut)-NH-NH2, was synthesized in solution. The middle segment A(8-16), Ddz-Thr(But)-Ser(But)-Ile-Cys(SBut)-Ser(But)-Leu-Tyr- (But)-Gln-Leu-NH-NH2, was obtained by solid phase synthesis according to the Fmoc strategy. The C-terminal segment A(17-21), Bpoc-Glu(OBut)-Asn-Tyr-Cys(Acm)-Asn-OBut, was prepared in solution.  相似文献   

10.
The role of three highly conserved insulin residues PheB24, PheB25, and TyrB26 was studied to better understand the subtleties of the structure-function relationship between insulin and its receptor. Ten shortened insulin analogues with modifications in the beta-strand of the B-chain were synthesized by trypsin-catalyzed coupling of des-octapeptide (B23-B30)-insulin with synthetic peptides. Insulin analogues with a single amino acid substitution in the position B26 and/or single N-methylation of the peptide bond at various positions were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by two types of in vitro assays, i.e., by the binding to the receptor of rat adipose plasma membranes and by the stimulation of the glucose transport into the isolated rat adipocytes. From our results, we can deduce several conclusions: (i) the replacement of tyrosine in the position B26 by phenylalanine has no significant effect on the binding affinity and the stimulation of the glucose transport of shortened analogues, whereas the replacement of TyrB26 by histidine affects the potency highly positively; [HisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide and [NMeHisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide show binding affinity 529 and 5250%, respectively, of that of human insulin; (ii) N-methylation of the B24-B25 peptide bond exhibits a disruptive effect on the potency of analogues in both in vitro studies regardless the presence of amino acid in the position B26; (iii) N-methylation of the B23-B24 peptide bond markedly reduces the binding affinity and the glucose transport of respective analogue [NMePheB24]-des-tetrapeptide (B27-B30)-insulin-B26-amide.  相似文献   

11.
The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.  相似文献   

12.
In this paper, we present the detailed synthetic protocol and characterization of Fmoc-Lys(Pac)-OH, its use for the preparation of octapeptides H-Gly-Phe-Tyr-N-MePhe-Thr-Lys(Pac)-Pro-Thr-OH and H-Gly-Phe-Phe-His-Thr-Pro-Lys(Pac)-Thr-OH by solid-phase synthesis, trypsin-catalyzed condensation of these octapeptides with desoctapeptide(B23-B30)-insulin, and penicillin G acylase catalyzed cleavage of phenylacetyl (Pac) group from Nepsilon-amino group of lysine to give novel insulin analogs [TyrB25, N-MePheB26,LysB28,ProB29]-insulin and [HisB26]-insulin. These new analogs display 4 and 78% binding affinity respectively to insulin receptor in rat adipose membranes.  相似文献   

13.
Replacement of B25-phenylalanine by leucine in the insulin sequence causes marked inactivation. The effect of this sequence variation was studied here in des-(B26-30)-insulin. [LeuB25]des-(B26-30)-insulin and its B25-amide were prepared by trypsin-mediated semisynthesis from N-terminally protected des-(B23-30)-insulin and synthetic tripeptides. The relative lipogenic potency in isolated rat adipocytes was 8.0% for the truncated analogue with a free B25-carboxyl function, and 18.1% for the amidated analogue. Binding to cultured human IM-9 lymphocytes was 4% and 9%, respectively. Thus, both shortened insulins are markedly more active than [LeuB25]insulin. The PheB25----LeuB25 substitution in both the shortened and the full sequence has a moderate effect on the CD spectrum, indicating that the gross main chain conformation is largely retained in both molecules. Independent of the substitution an absolute increase of the circular dichroism is observed upon amidation of the B25-carboxyl group.  相似文献   

14.
Des-(B25-B30)-hexapeptide-insulin with B23-glycine replaced by D-alanine was prepared by a combination of enzymic and non-enzymic syntheses. The purified product was homogeneous in polyacrylamide-gel electrophoresis and could be crystallized. The biological activity in vivo of crystalline [B23-D-Ala]des-(B25-B30)-hexapeptide-insulin was determined as 58% of that of standard pig insulin (27 i.u./mg).  相似文献   

15.
Q X Hua  M A Weiss 《Biochemistry》1991,30(22):5505-5515
The solution structure and dynamics of human insulin are investigated by 2D 1H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide(B26-B30) insulin (DPI; Hua, Q.X., & Weiss, M.A. (1990) Biochemistry 29, 10545-10555). This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three alpha-helices and B-chain beta-turn) is similar to that observed in the 2-Zn crystal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structures. However, differences between insulin and DPI are observed in the extent of conformational broadening of amide resonances, indicating that the presence or absence of residues B26-B30 influences the overall dynamics of the protein on the millisecond time scale. (3) Residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. This configuration differs from that described in a more organic milieu (35% acetonitrile; Kline, A.D., & Justice, R.M., Jr. (1990) Biochemistry 29, 2906-2913), suggesting that the conformation of insulin in the latter study may have been influenced by solvent composition. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To our knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening. Such an analysis is made possible in the present case by comparative study of an analogue (DPI) with more tractable spectroscopic properties.  相似文献   

16.
D Davis  F O Garces 《Steroids》1992,57(11):563-568
The molecular structure of 3,3-difluoro-5 alpha-androstane-17 beta-ol acetate was analyzed by 1H, 13C, and 19F nuclear magnetic resonance (NMR) techniques; two-dimensional NMR was used to assigned 1H and 13C resonances. The 1H NMR spectrum in deuterated chloroform shows three sharp singlets (delta = 0.74, 0.79, and 2.00 ppm) integrating for three protons each, an isolated triplet at 4.55 ppm integrating for one proton, and overlapping multiplets between 0.72 and 2.12 ppm integrating for 31 protons. The 13C spectrum shows 18 resonances between 10 and 55 ppm, and three additional resonances at 82.9, 124.0, and 171.5 ppm. The 19F[1H] spectrum shows two sets of doublets (observed 2J = 150 Hz) at 5.00 and -4.80 ppm. Multiplets arising from 19F-13C J-coupling provide the starting assignment for all resonances by means of 1H homonuclear correlation (COSY) and 1H-13C heteronuclear correlation spectroscopy.  相似文献   

17.
Q X Hua  S E Shoelson  M A Weiss 《Biochemistry》1992,31(47):11940-11951
Insulin's mechanism of receptor binding is not well understood despite extensive study by mutagenesis and X-ray crystallography. Of particular interest are "anomalous" analogues whose bioactivities are not readily rationalized by crystal structures. Here the structure and dynamics of one such analogue (GlyB24-insulin) are investigated by circular dichroism (CD) and isotope-aided 2D-NMR spectroscopy. The mutant insulin retains near-native receptor-binding affinity despite a nonconservative substitution (PheB24-->Gly) in the receptor-binding surface. Relative to native insulin, GlyB24-insulin exhibits reduced dimerization; the monomer (the active species) exhibits partial loss of ordered structure, as indicated by CD studies and motional narrowing of selected 1H-NMR resonance. 2D-NMR studies demonstrate that the B-chain beta-turn (residues B20-23) and beta-strand (residues B24-B28) are destabilized; essentially native alpha-helical secondary structure (residues A3-A8, A13-A18, and B9-B19) is otherwise maintained. 13C-Isotope-edited NOESY studies demonstrate that long-range contacts observed between the B-chain beta-strand and the alpha-helical core in native insulin are absent in the mutant. Implications for the mechanism of insulin's interaction with its receptor are discussed.  相似文献   

18.
Rubach JK  Plapp BV 《Biochemistry》2002,41(52):15770-15779
The relationship between substrate mobility and catalysis was studied with wild-type and Phe93Ala (F93A) horse liver alcohol dehydrogenase (ADH). Wild-type ADH binds 2,3,4,5,6-pentafluorobenzyl alcohol in one position as shown by X-ray results, and (19)F NMR shows five resonances for the fluorines of the bound alcohol. The two meta-fluorines exchange positions with a rate constant of about 4 s(-1), indicating that mobility (ring flipping) of the benzyl alcohol is relatively restricted. The wild-type enzyme binds 2,3-difluorobenzyl alcohol in two alternative conformations that are related by a ring flip and a small translation of the fluorinated benzene ring, and the (19)F NMR spectrum shows three resonances for the two bound fluorines, consistent with the two orientations. Phe-93 interacts with the bound benzyl alcohols, and the F93A substitution decreases the rate constants for hydride transfer for benzyl alcohol oxidation and benzaldehyde reduction by 7.4- and 130-fold, respectively. The structure of F93A ADH crystallized with NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol is similar to the structure of the wild-type enzyme complex except that the pentafluorobenzyl alcohol is not found in one position. The (19)F NMR spectrum of the F93A ADH-NAD(+)-pentafluorobenzyl alcohol complex shows three resonances for the bound fluorines. Line shape analysis of the spectrum suggests the bound pentafluorobenzyl ring undergoes rapid ring-flipping at about 20 000 s(-1). The F93A substitution greatly increases the mobility of the benzyl alcohol but modestly and differentially decreases the probability that the substrate is preorganized for hydride transfer.  相似文献   

19.
The trypsin-catalyzed coupling of bovine (Boc)2-desoctapeptide (B23-B30)-insulin with synthetic octapeptides, H-Gly-X2-X3-X4-Thr-Pro-Lys(Boc)-Thr-OH (X2 = Phe or Ala, X3 = Phe or Ala, X4 = Tyr or Ala), followed by deprotection and purification produced the [AlaB24, ThrB30]-, [AlaB25, ThrB30]-, and [AlaB26, ThrB30]-analogs of bovine insulin in yields of 32, 35, and 32%, respectively. The biological activity of these analogs decreased in the order, normal insulin ([ThrB30]-bovine insulin) = AlaB26-insulin > AlaB25-insulin > AlaB24-insulin, as assayed for receptor binding and some other biological effects, in contrast with the corresponding Leu-analogs of human insulin, in which the activity decreased in the order, normal insulin > LeuB24-insulin > LeuB25-insulin. The affinity to insulin antibodies greatly diminished in both AlaB24-insulin and LeuB24-insulin but not in the B25-substituted analogs. The CD spectra of the Leu- and the Ala-analogs were compared with those of normal insulins to show that no apparent correlation seems to exist between the decrease in biological activity and the conformational changes observed in solution. The effects of organic solvents on the peptide-bond equilibrium and on the stability of trypsin are also discussed.  相似文献   

20.
In this study, we prepared several shortened and full-length insulin analogues with substitutions at position B26. We compared the binding affinities of the analogues for rat adipose membranes with their ability to lower the plasma glucose level in nondiabetic Wistar rats in vivo after subcutaneous administration, and also with their ability to stimulate lipogenesis in vitro. We found that [NMeHisB26]-DTI-NH 2 and [NMeAlaB26]-DTI-NH 2 were very potent insulin analogues with respect to their binding affinities (214 and 465%, respectively, compared to that of human insulin), but they were significantly less potent than human insulin in vivo. Their full-length counterparts, [NMeHisB26]-insulin and [NMeAlaB26]-insulin, were less effective than human insulin with respect to binding affinity (10 and 21%, respectively) and in vivo activity, while [HisB26]-insulin exhibited properties similar to those of human insulin in all of the tests we carried out. The ability of selected analogues to stimulate lipogenesis in adipocytes was correlated with their biological potency in vivo. Taken together, our data suggest that the B26 residue and residues B26-B30 have ambiguous roles in binding affinity and in vivo activity. We hypothesize that our shortened analogues, [NMeHisB26]-DTI-NH 2 and [NMeAlaB26]-DTI-NH 2, have different modes of interaction with the insulin receptor compared with natural insulin and that these different modes of interaction result in a less effective metabolic response of the insulin receptor, despite the high binding potency of these analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号