首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epstein-Barr virus nuclear antigen 2 (EBNA2) is essential for B-cell immortalization by EBV, most probably by its ability to transactivate a number of cellular and viral genes. EBNA2-responsive elements (EBNA2REs) have been identified in several EBNA2-regulated viral promoters, each of them carrying at least one RBP-Jkappa recognition site. RBP-Jkappa recruits EBNA2 to the EBNA2RE and, once complexed to EBNA2, is converted from a repressor into an activator. An activated form of the cellular receptor Notch also interacts with RBP-Jkappa, providing a link between EBNA2 and Notch signalling. To determine whether activated Notch is able to transactivate EBNA2-responsive viral promoters, we performed cotransfection experiments with activated mouse Notch1 (mNotch1-IC) and luciferase constructs of the BamHI C, LMP1, and LMP2A promoters. We present here evidence that mNotch1-IC transactivates viral promoters known to be regulated by EBNA2. As shown for EBNA2, mutations or deletions of the RBP-Jkappa sites diminish or eliminate mNotch1-IC-mediated transactivation of the promoters, pointing to an essential role for Notch-RBP-Jkappa interaction. In addition to RBP-Jkappa, other cellular factors may bind within the EBNA2REs of viral promoters. While some factors appear to play an important role in both EBNA2- and mNotch1-IC-mediated transactivation, others are only important for the activity of either EBNA2 or mNotch1-IC. We could observe specific mNotch1-IC-responsive regions, thereby throwing more light upon which cofactors interact with EBNA2 and mNotch1-IC, thus enabling them to become functionally transactivators in vivo.  相似文献   

3.
4.
The latent membrane protein-1 (LMP1) of Epstein-Barr Virus (EBV), saimiri transformation protein (STP) of Herpesvirus saimiri (HVS), and K1 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) are potent gammaherpesvirus oncogenes. To study the possible effects of double viral infection, we investigated the effects of oncogenic early proteins of DNA viruses E1A and E1B (adenovirus-5), E6 and E7 (human papillomavirus-16), HBx (hepatitis B virus), Tag (SV40), and gammaherpesviral oncogene during co-infection in human B-lymphoma (Ramos) and human T-cell leukemia (Jurkat) cell lines. HBx transactivated the promoters of LMP1, STP, and K1 the most, by about six-, three-, and twofold, respectively. Analyses of site-directed mutation and the heterologous promoter system showed that HBx activated the promoter activity of these genes via the NF-kappaB site. These results suggest that HBV (HBx) infection of cells previously infected by gammaherpesviruses transactivates their oncogenes, resulting in possible virus-related disease pathogenesis.  相似文献   

5.
The latent Epstein-Barr virus (EBV) is found in the cells of many tumors. For example, EBV is detectable in almost all cases, and in almost all tumor cells, of non-keratinizing nasopharyngeal carcinoma.Activating the latent virus, which will result in its lytic replication and the death of tumor cells, is a potential approach for the treatment of EBV-associated cancers. In this study, three recombinant adenoviruses were constructed to express the Zebra gene, an EBV gene responsible for switching from the latent state to lytic replication. EBV-specific promoters were used in order to limit Zebra expression in EBV-positive cells, and reduce the potential side effects. The EBV promoters used were Cp, Zp and a dual promoter combining both promoters, CpZp. The Zebra protein was detected in HEK293 cells as well as the EBV-positive D98-HR1 cells infected with recombinant viruses. An EBV lytic replication early antigen, EA-D, was also detected in infected D98-HR1, implying the initiation of lytic replication. In the cell viability assay, Zebra-expressing adenoviruses had little effect on EBV-negative HeLa cells, while significantly reducing the cell viability and proliferation of D98-HR1 cells. The results indicate that EBV virus promoters can be used in adenovirus vectors to express the Zebra gene and induce EBV lytic replication in D98-HR1 cells.  相似文献   

6.
7.
Ning S  Hahn AM  Huye LE  Pagano JS 《Journal of virology》2003,77(17):9359-9368
We have shown previously that interferon regulatory factor 7 (IRF7), a multifunctional protein intimately involved in latent Epstein-Barr virus (EBV) infection, is induced as well as activated by EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein. Since the LMP1 promoter (LMP1p) contains an interferon-stimulated response element (ISRE), we hypothesized that IRF7 might be able to regulate LMP1 expression and thus participate in a regulatory circuit between these two genes. In this study, IRF7 was shown first to activate LMP1p in transient transfection assays. Compared with EBV nuclear antigen 2 (EBNA2), the most potent viral transactivator of LMP1p, IRF7 has a lesser effect (approximately 10% that of EBNA2) on induction of LMP1p. Study with IRF7 deletion mutants showed that IRF7 functional domains have similar effects on both the beta interferon (IFN-beta) and LMP1 promoters in BJAB and 293 cells, and study with IRF7 phosphomimetic mutants showed that IRF7 phosphorylation may be involved in the activation of these two promoters. Further, the ISRE in LMP1p responds to IRF7 induction and IRF7 binds to this element. In the EBV-positive cell line P3HR1, which lacks the complete EBNA2 and EBV-encoded leader protein genes and hence expresses low-level LMP1, IRF7 alone can notably increase the endogenous LMP1 mRNA and protein levels. These results indicate that LMP1 is regulated by this host cell gene in addition to the viral factor, EBNA2, and may help to explain how LMP1 is expressed in type II latency in the absence of EBNA2. Moreover, IRF7 can regulate a viral gene in addition to a host cellular gene such as the IFN-beta gene. Together with the previous data that LMP1 can induce IRF7 expression and facilitate IRF7 phosphorylation and nuclear translocation, these results suggest a positive regulatory circuit between IRF7 and LMP1.  相似文献   

8.
We have analyzed the expression of the three major known growth transformation-associated Epstein-Barr virus (EBV) proteins, EBNA-1, EBNA-2, and latent membrane protein (LMP), in a series of somatic cell hybrids derived from the fusion of EBV-carrying Burkitt lymphoma (BL) lines with EBV-positive or EBV-negative B-cell lines. Independently of the cell phenotype, EBNA-1 was invariably coexpressed in all EBV-carrying hybrids. In hybrids between EBV-carrying, LMP-positive and LMP-negative Burkitt lymphoma lines, LMP was expressed, indicating positive control. Two EBV-negative lymphoma lines, Ramos and BJAB, differed in their ability to express LMP after B95-8 virus-induced conversion and after hybridization with Raji cells. BJAB was permissive while Ramos was nonpermissive for LMP, although both expressed EBNA-2. The EBNA-2-deleted P3HR-1 virus gave the same pattern of LMP expression in these two cells. Our findings indicate that the expression of EBNA-1, EBNA-2, and LMP is regulated by independent mechanisms.  相似文献   

9.
10.
11.
12.
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation.  相似文献   

13.
Latent Epstein-Barr virus (EBV) infection and growth transformation of B lymphocytes is characterized by EBV nuclear and membrane protein expression (EBV nuclear antigen [EBNA] and latent membrane protein [LMP], respectively). LMP1 is known to be an oncogene in rodent fibroblasts and to induce B-lymphocyte activation and cellular adhesion molecules in the EBV-negative Burkitt's lymphoma cell line Louckes. EBNA-2 is required for EBV-induced growth transformation; it lowers rodent fibroblast serum dependence and specifically induces the B-lymphocyte activation antigen CD23 in Louckes cells. These initial observations are now extended through an expanded study of EBNA- and LMP1-induced phenotypic effects in a different EBV-negative B-lymphoma cell line, BJAB. LMP1 effects were also evaluated in the EBV-negative B-lymphoma cell line BL41 and the EBV-positive Burkitt's lymphoma cell line, Daudi (Daudi is deleted for EBNA-2 and does not express LMP). Previously described EBNA-2- and LMP1-transfected Louckes cells were studied in parallel. EBNA-2, from EBV-1 strains but not EBV-2, induced CD23 and CD21 expression in transfected BJAB cells. In contrast, EBNA-3C induced CD21 but not CD23, while no changes were evident in vector control-, EBNA-1-, or EBNA-LP-transfected clones. EBNAs did not affect CD10, CD30, CD39, CD40, CD44, or cellular adhesion molecules. LMP1 expression in all cell lines induced growth in large clumps and expression of the cellular adhesion molecules ICAM-1, LFA-1, and LFA-3 in those cell lines which constitutively express low levels. LMP1 expression induced marked homotypic adhesion in the BJAB cell line, despite the fact that there was no significant increase in the high constitutive BJAB LFA-1 and ICAM-1 levels, suggesting that LMP1 also induces an associated functional change in these molecules. LMP1 induction of these cellular adhesion molecules was also associated with increased heterotypic adhesion to T lymphocytes. The Burkitt's lymphoma marker, CALLA (CD10), was uniformly down regulated by LMP1 in all cell lines. In contrast, LMP1 induced unique profiles of B-lymphocyte activation antigens in the various cell lines. LMP1 induced CD23 and CD39 in BJAB; CD23 in Louckes; CD39 and CD40 in BL41; and CD21, CD40, and CD44 in Daudi. In BJAB, CD23 surface and mRNA expression were markedly increased by EBNA-2 and LMP1 coexpression, compared with EBNA-2 or LMP1 alone. This cooperative effect was CD23 specific, since no such effect was observed on another marker, CD21.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
CaM kinase-Gr is a multifunctional Ca2+/calmodulin-dependent protein kinase which is enriched in neurons and T lymphocytes. The kinase is absent from primary human B lymphocytes but is expressed in Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell lines, suggesting that expression of the kinase can be upregulated by an EBV gene product(s). We investigated the basis of CaM kinase-Gr expression in EBV-transformed cells and the mechanisms that regulate its activity therein by using an EBV-negative Burkitt lymphoma cell line, BJAB, and BJAB cells converted to expression of individual EBV proteins by single-gene transfer. CaM kinase-Gr expression was upregulated in BJAB cells by EBV latent-infection membrane protein 1 (LMP1) but not by LMP2A or by nuclear proteins EBNA1, EBNA2, EBNA3A, and EBNA3C. In LMP1-converted BJAB cells, the kinase was functional and was dramatically activated upon cross-linking of surface immunoglobulin M. Overlapping cDNA clones that encode human CaM kinase-Gr were sequenced, revealing 81% amino acid identity between the rat and human proteins. Transfection of BJAB cells with an expression construct for the human enzyme resulted in a functional kinase which was shown by epitope tagging to localize primarily to cytoplasmic and perinuclear structures. Induction of CaM kinase-Gr expression by LMP1 provides the first example of a Ca2+/calmodulin-dependent protein kinase upregulated by a viral protein. In view of the key role played by LMP1 in B-lymphocyte immortalization by EBV, these findings implicate CaM kinase-Gr as a potential mediator of B-lymphocyte growth transformation.  相似文献   

15.
16.
Epstein-Barr virus (EBV) latency gene expression in lymphoblastoid cell lines is regulated by EBNA2. However, the factors regulating viral expression in EBV-associated tumors that do not express EBNA2 are poorly understood. In EBV-associated tumors, EBNA1 and frequently LMP1 are synthesized. We found that an alternative latent membrane protein 1 (LMP1) promoter, L1-TR, located within the terminal repeats is active in both nasopharyngeal carcinoma and Hodgkin's disease tissues. Examination of the L1-TR and the standard ED-L1 LMP1 promoters in electrophoretic mobility shift assays revealed that both promoters contain functional STAT binding sites. Further, both LMP1 promoters responded in reporter assays to activation of JAK-STAT signaling. Cotransfection of JAK1 or v-Src or treatment of cells with the cytokine interleukin-6 upregulated expression from ED-L1 and L1-TR reporter plasmids. Cotransfection of a dominant negative STAT3 beta revealed that STAT3 is likely to be the biologically relevant STAT for EBNA1 Qp and LMP1 L1-TR promoter regulation. In contrast, LMP1 expression from ED-L1 was not abrogated by STAT3 beta, indicating that the two LMP1 promoters are regulated by different STAT family members. Taken together with the previous demonstration of JAK-STAT activation of Qp driven EBNA1 expression, this places two of the EBV genes most commonly expressed in tumors under the control of the same signal transduction pathway. Immunohistochemical analyses of nasopharyngeal carcinoma tumors revealed that STAT3, STAT5, and STAT1 are constitutively activated in these tumors while STAT3 is constitutively activated in the malignant cells of Hodgkin's disease. We hypothesize that chronic or aberrant STAT activation may be both a necessary and predisposing event for EBV-driven tumorigenesis in immunocompetent individuals.  相似文献   

17.
18.
The Epstein-Barr virus (EBV) BZLF1 gene product is thought to mediate the disruption of latent EBV infection. We have examined the regulatory effects of BZLF1 by studying its transactivating effects on seven different EBV promoters. We find that whereas the BZLF1 gene product increases the activity of the two early promoters, BMLF1 and BMRF1, it decreases the activity of three latent promoters (the BamHI-C and BamHI-W Epstein-Barr nuclear antigen promoters and the latent membrane protein promoter). The BZLF1-induced changes in promoter-directed chloramphenicol acetyltransferase activity occur in EBV-negative as well as EBV-positive cell lines and are accompanied by a similar change in chloramphenicol acetyltransferase mRNA. Deletion analysis of the BamHI Z fragment indicates that in a portion of the amino-terminal half of the BZLF1 gene product (amino acids 24 to 86) is not essential for positive transactivating effects but is required for down-regulating effects. Thus, different domains of the same EBV immediate-early gene product can either increase the function of EBV promoters active in productive infection or decrease the function of key promoters active in latent infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号