首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Summary To study the mechanisms of morphogenesis in salivary gland regeneration, we have established the RSMG-1 cell line derived from submandibular gland (SMG) of 10-wk-old Wistar female rats in serum-free culture. Our finding that RSMG-1 cells originated from duct cells was based on morphology and immunohistochemical results. In three-dimensional serum-free collagen gel culture, HGF induced branching morphogenesis of RSMG-1 cells. Histological examination revealed that HGF-induced branching structure exhibited well-formed lumina. This morphology closely resembles that found in vivo. The cells also expressed activin A. Exogenously added activin A at a high concentration reduced HGF-induced branching morphogenesis. These findings suggest that the morphogenesis of the salivary gland is modulated by HGF and activin A. Our results show that the RSMG-1 cell line may be useful in studies of salivary gland regeneration.  相似文献   

3.
The activin axis in liver biology and disease   总被引:4,自引:0,他引:4  
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.  相似文献   

4.
Ventral prostate development occurs by branching morphogenesis and is an androgen-dependent process modulated by growth factors. Many growth factors have been implicated in branching morphogenesis including activins (dimers of beta(A) and beta(B) subunits); activin A inhibited branching of lung and kidney in vitro. Our aim was to examine the role of activins on prostatic development in vitro and their localization in vivo. Organ culture of day 0 rat ventral prostates for 6 days with activin A (+/- testosterone) inhibited prostatic branching and growth without increasing apoptosis. The activin-binding protein follistatin increased branching in vitro in the absence (but not presence) of testosterone, suggesting endogenous activins may reduce prostatic branching morphogenesis. In vivo, inhibin alpha subunit was not expressed until puberty, therefore inhibins (dimers of alpha and beta subunits) are not involved in prostatic development. Activin beta(A) was immunolocalized to developing prostatic epithelium and mesenchymal aggregates at ductal tips. Activin beta(B) immunoreactivity was weak during development, but was upregulated in prostatic epithelium during puberty. Activin receptors were expressed throughout the prostatic epithelium. Follistatin mRNA and protein were expressed throughout the prostatic epithelium. The in vitro evidence that activin and follistatin have opposing effects on ductal branching suggests a role for activin as a negative regulator of prostatic ductal branching morphogenesis.  相似文献   

5.
The pronephros is the first kidney to develop and is the functional embryonic kidney in lower vertebrates. It has previously been shown that pronephric tubules can be induced to form ex vivo in ectodermal tissue by treatment with activin A and retinoic acid. In this study, we investigated the role of Ca(2+) signaling in the formation of the pronephric tubules both in intact Xenopus embryos and ex vivo. In the ex vivo system, retinoic acid but not activin A stimulated the generation of Ca(2+) transients during tubule formation. Furthermore, tubule differentiation could be induced by agents that increase the concentration of intracellular Ca(2+) in activin A-treated ectoderm. In addition, tubule formation was inhibited by loading the ectodermal tissue with the Ca(2+) chelator, BAPTA-AM prior to activin A/retinoic acid treatment. In intact embryos, Ca(2+) transients were also recorded during tubule formation, and photo-activation of the caged Ca(2+) chelator, diazo-2, localized to the pronephric domain, produced embryos with a shortened and widened tubule phenotype. In addition, the location of the Ca(2+) transients observed, correlated with the expression pattern of the specific pronephric tubule gene, XSMP-30. These data indicate that Ca(2+) might be a necessary signal in the process of tubulogenesis both ex vivo and in intact embryos.  相似文献   

6.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease. ADPKD is characterized by cyst development that leads to abnormal kidney structure. Renal tubules are a fundamental unit of architecture, so controls of tubular growth and formation are important for proper kidney function. The molecular mechanisms of tubulogenesis are being actively studied as the basis of diagnosis and treatment of ADPKD. Mxi1 is a member of the MAD family of proteins that functions in terminal differentiation, inhibition of cell cycle progression and tumor suppression, while the Myc protein, which is antagonized by Mxi1, causes renal cystogenesis. Based on these molecular relationships, the present study implicated Mxi1 with ADPKD be demonstrating that curtailed Mxi1 gene expression caused cyst formation in Mxi1-deficient mice. To ascertain whether Mxi1 affects renal epithelial cell tubulogenesis, three-dimensional cultures (3D culture) of mIMCD-3 cells and stably Mxi1 over-expressed mIMCD-3 cells were established. The results indicated that over-expression of the Mxi1 gene plays a role in the regulation of tubulogenesis by regulating some genes participating in renal epithelial branching tubulogenesis such as matrix metalloproteinase 9 (MMP9), integrins, fibronectin, and E-cadherin. The results support the suggestion that over-expression of Mxi1 can suppress renal epithelial tubulogenesis. In particular, MMP9 is greatly affected by the expression level of Mxi1. It can be concluded that mIMCD-3 cells that stably over-express Mxi1 fail to form renal epithelial tubules because of abnormally reduced expression of MMP9.  相似文献   

7.
Beginning with the observation that hepatocyte growth factor (HGF) induces the formation of branching tubular structures in Madin-Darby canine kidney (MDCK) cells cultured in Type I collagen gels but not in basement membrane Matrigel, we examined the individual components within this complex basement membrane extract to determine the effect of these proteins on the morphogenetic changes mediated by HGF. After extraction of several growth factors from Matrigel, HGF was still unable to induce process formation, an early event in tubulogenesis, indicating that one or more of the remaining extracellular matrix (ECM) proteins or growth factors were exerting the inhibitory effect. By individually adding back these components to MDCK cells grown in Type I collagen gels in the presence of HGF, we were able to establish that: (1) certain ECM proteins, such as laminin, entactin, and fibronectln, actually facilitated the formation of branching tubular structures and increased their complexity; (2) other ECM proteins, such as Type IV collagen, heparan sulfate proteoglycan, and vitronectin, caused marked inhibition of HGF-induced morphogenesis; and (3) not only did transforming growth factor-β (TGF-β) inhibit the formation of tubular structures, but those which did form exhibited little branching, thereby suggesting that TGF-β modulates tubulogenesis as well as branching. These results suggest that a tubulogenic morphogen such as HGF and a tubulogenesis-inhibitory morphogen such as TGF-β can, in the context of the dynamic matrix known to exist during epithelial tissue development, modulate the degree of tubule (or ductal) formation, the length of these tubules, and the extent of their arborization. The relevance of these findings to tubulogenesis and branching during kidney development is discussed.  相似文献   

8.
T Kang  J Yi  W Yang  X Wang  A Jiang  D Pei 《FASEB journal》2000,14(15):2559-2568
MT3-MMP, a membrane-anchored matrix metalloproteinase, has been proposed to participate in the remodeling of extracellular matrix either by direct proteolysis or via activating other enzymes such as progelatinase A. To test this hypothesis, we analyzed the effect of exogenously transfected MT3-MMP in a tissue remodeling system: growth and tubulogenesis of Madin-Darby canine kidney (MDCK) cells in collagen gels. Although the parental cells require MMP activities for both growth and tubulogenesis, over-expression of wild-type MT3-MMP, but not its catalytically inactive mutant, leads to further enhancement of both processes, independent of its downstream substrate, progelatinase A. Mechanistically, MT3-MMP accomplishes such an effect by displaying on cell surfaces as active species, ready to activate progelatinase A or degrade ECM molecules. These data strongly suggest that MT3-MMP possesses the potential to directly enhance the growth and invasiveness of cells in vivo, two critical processes for development and carcinogenesis.  相似文献   

9.
10.
11.
In search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism. Electron microscopy and decoration of heparan sulfates with biotinylated FGF2 revealed that the basolateral surface of the cells remained intact, without the type of cytoplasmic extensions (invadopodia) that are seen in three-dimensional MDCK, mIMCD, and UB cell culture models of branching tubulogenesis. Several growth factor receptors (i.e., FGFR1, FGFR2, c-Ret) and metalloproteases (i.e., MT1-MMP) were localized toward branching UB tips. A large survey of markers revealed the ER chaperone BiP to be highly expressed at UB tips, which, by electron microscopy, are enriched in rough endoplasmic reticulum and Golgi, supporting high activity in the synthesis of transmembrane and secretory proteins at UB tips. After early diffuse proliferation, proliferating and mitotic cells were mostly found within the branching ampullae, whereas apoptotic cells were mostly found in stalks. Gene array experiments, together with protein expression analysis by immunoblotting, revealed a differential spatiotemporal distribution of several proteins associated with epithelial maturation and polarization, including intercellular junctional proteins (e.g., ZO-1, claudin-3, E-cadherin) and the subapical cytoskeletal/microvillar protein ezrin. In addition, Ksp-cadherin was found at UB ampullary cells next to developing outpouches, suggesting a role in epithelial-mesenchymal interactions. These data from the isolated UB culture system support a model where UB branching occurs through outpouching possibly mediated by wedge-shaped cells created through an apical cytoskeletal purse-string mechanism. Additional potential mechanisms include (1) differential localization of growth factor receptors and metalloproteases at tips relative to stalks; (2) creation of a secretory epithelium, in part manifested by increased expression of the ER chaperone BiP, at tips relative to stalks; (3) after initial diffuse proliferation, coexistence of a balance of proliferation vs. apoptosis favoring tip growth with a very different balance in elongating stalks; and (4) differential maturation of the tight and adherens junctions as the structures develop. Because, without mesenchyme, both lateral and bifid branching occurs (including the ureter), the mesenchyme probably restricts lateral branching and provides guidance cues in vivo for directional branching and elongation as well as functioning to modulate tubular caliber and induce differentiation. Selective cadherin, claudin, and microvillar protein expression as the UB matures likely enables the formation of a tight, polarized differentiated epithelium. Although, in vivo, metanephric mesenchyme development occurs simultaneously with UB branching, these studies shed light on how (mesenchymally derived) soluble factors alone regulate spatial and temporal expression of morphogenetic molecules and processes (proliferation, apoptosis, etc.) postulated to be essential to the UB branching program as it forms an arborized structure with a continuous lumen.  相似文献   

12.
Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-β1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-β1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response. J. Cell. Physiol. 180:81–90, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

13.
14.
Hepatocyte growth factor (HGF)/scatter factor is a multifunctional cytokine that induces mitogenesis, motility, and morphogenesis in epithelial, endothelial, and neuronal cells. The receptor for HGF/scatter factor was identified as c-Met tyrosine kinase, and activation of the receptor induces multiple signaling cascades. To gain further insight into c-Met-mediated multiple events at a molecular level, we isolated several signaling molecules including a novel binding partner of c-Met, SH2 domain-containing inositol 5-phosphatase 1 (SHIP-1). Western blot analysis revealed that SHIP-1 is expressed in the epithelial cell line, Madin-Darby canine kidney (MDCK) cells. SHIP-1 binds at phosphotyrosine 1356 at the multifunctional docking site. Because a number of signaling molecules such as Grb2, phosphatidylinositol 3-kinase, and Gab1 bind to the multifunctional docking site, we further performed an in vitro competition study using glutathione S-transferase- or His-tagged signaling molecules with c-Met tyrosine kinase. Our binding study revealed that SHIP-1, Grb2, and Gab1 bound preferentially over phosphatidylinositol 3-kinase. Surprisingly, MDCK cells that overexpress SHIP-1 demonstrated branching tubulogenesis within 2 days after HGF treatment, whereas wild-type MDCK cells showed tubulogenesis only after 6 days following treatment without altering cell scattering or cell growth potency. Furthermore, overexpression of a mutant SHIP-1 lacking catalytic activity impaired HGF-mediated branching tubulogenesis.  相似文献   

15.
We previously established a rat submandibular gland (SMG)-derived epithelial cell line (RSMG-1) to study the mechanism of morphogenesis in salivary gland development and regeneration. We found that activin A regulated the branching morphogenesis of RSMG-1 cells, suggesting that it is involved in SMG morphogenesis. We used a subtraction cloning procedure with activin-A-treated and untreated RSMG-1 cells to identify activin-A-induced genes. One of the genes detected encoded a rat homologue of Sel-1l (rSel-1l). rSel-1l is a mammalian homologue of C. elegans sel-1, which is a negative regulator of Notch signaling. In this study, we confirmed that activin A induces rSel-1l mRNA expression in RSMG-1 cells, and that rSel-1l is expressed in SMG acinar cells. These results suggest that activin A regulates the differentiation of RSMG-1 cells to acinar cells.  相似文献   

16.
R Montesano  G Schaller  L Orci 《Cell》1991,66(4):697-711
We have designed an in vitro system in which Madin-Darby canine kidney (MDCK) epithelial cells are cocultured in collagen gels with fibroblasts under conditions precluding heterocellular contact. Using this experimental approach, we have obtained evidence that fibroblast-derived soluble factors play a crucial role in the control of epithelial morphogenesis. First, MDCK cells suspended alone in collagen gels form spherical cysts, whereas in the presence of fibroblasts they form branching tubules. Second, MDCK cells grown as a monolayer on fibroblast-containing collagen gels invade the underlying matrix, within which they form a network of tubules. Third, fibroblast-conditioned medium mimics the effects of coculture by eliciting tubulogenesis by MDCK cells. These results demonstrate the involvement of diffusible paracrine factors in morphogenetic epithelial-mesenchymal interactions and provide a strategy for their molecular characterization.  相似文献   

17.
Uterine gland development or adenogenesis in the neonatal ovine uterus involves budding and tubulogenesis followed by coiling and branching morphogenesis of the glandular epithelium (GE) from the luminal epithelium (LE) between birth (Postnatal Day [PND] 0) and PND 56. Activins, which are members of the transforming growth factor beta superfamily, and follistatin, an inhibitor of activins, regulate epithelial branching morphogenesis in other organs. The objective of the present study was to determine effects of postnatal age on expression of follistatin, inhibin alpha subunit, betaA subunit, betaB subunit, activin receptor (ActR) type IA, ActRIB, and ActRII in the developing ovine uterus. Ewes were ovariohysterectomized on PND 0, 7, 14, 21, 28, 35, 42, 49, or 56. The uterus was analyzed by in situ hybridization and immunohistochemistry. Neither inhibin alpha subunit mRNA or protein was detected in the neonatal uterus. Expression of betaA and betaB subunits was detected predominantly in the endometrial LE and GE and myometrium between PND 0 and PND 56. In all uterine cell types, ActRIA, ActRIB, and ActRII were expressed, with the highest levels observed in the endometrial LE and GE and myometrium. Between PND 0 and PND 14, follistatin was detected in all uterine cell types. However, between PND 21 and PND 56, follistatin was only detected in the stroma and myometrium and not in the developing GE. Collectively, the present results indicate that components of the activin-follistatin system are expressed in the developing neonatal ovine uterus and are potential regulators of endometrial gland morphogenesis.  相似文献   

18.
Stimulation of the hepatocyte growth factor (HGF) receptor tyrosine kinase, Met, induces mitogenesis, motility, invasion, and branching tubulogenesis of epithelial and endothelial cell lines in culture. We have previously shown that Gab1 is the major phosphorylated protein following stimulation of the Met receptor in epithelial cells that undergo a morphogenic program in response to HGF. Gab1 is a member of the family of IRS-1-like multisubstrate docking proteins and, like IRS-1, contains an amino-terminal pleckstrin homology domain, in addition to multiple tyrosine residues that are potential binding sites for proteins that contain SH2 or PTB domains. Following stimulation of epithelial cells with HGF, Gab1 associates with phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2. Met receptor mutants that are impaired in their association with Gab1 fail to induce branching tubulogenesis. Overexpression of Gab1 rescues the Met-dependent tubulogenic response in these cell lines. The ability of Gab1 to promote tubulogenesis is dependent on its pleckstrin homology domain. Whereas the wild-type Gab1 protein is localized to areas of cell-cell contact, a Gab1 protein lacking the pleckstrin homology domain is localized predominantly in the cytoplasm. Localization of Gab1 to areas of cell-cell contact is inhibited by LY294002, demonstrating that phosphatidylinositol 3-kinase activity is required. These data show that Gab1 is an important mediator of branching tubulogenesis downstream from the Met receptor and identify phosphatidylinositol 3-kinase and the Gab1 pleckstrin homology domain as crucial for subcellular localization of Gab1 and biological responses.  相似文献   

19.
Protein-rich fractions inhibitory for isolated ureteric bud (UB) growth were separated from a conditioned medium secreted by cells derived from the metanephric mesenchyme (MM). Elution profiles and immunoblotting indicated the presence of members of the transforming growth factor-beta (TGF-beta) superfamily. Treatment of cultured whole embryonic kidney with BMP2, BMP4, activin, or TGF-beta1 leads to statistically significant differences in the overall size of the kidney, the number of UB branches, the length and angle of the branches, as well as in the thickness of the UB stalks. Thus, the pattern of the ureteric tree is altered. LIF, however, appeared to have only minimal effect on growth and development of the whole embryonic kidney in organ culture. The factors all directly inhibited, in a concentration-dependent fashion, the growth and branching of the isolated UB, albeit to different extents. Antagonists of some of these factors reduced their inhibitory effect. Detailed examination of TGF-beta1-treated UBs revealed only a slight increase in the amount of apoptosis in tips by TUNEL staining, but diminished proliferation throughout by Ki67 staining. These data suggest an important direct modulatory role for BMP2, BMP4, LIF, TGF-beta1, and activin (as well as their antagonists) on growth and branching of the UB, possibly in shaping the growing UB by playing a role in determining the number of branches, as well as where and how the branches occur. In support of this notion, UBs cultured in the presence of fibroblast growth factor 7 (FGF7), which induces the formation of globular structures with little distinction between the stalk and ampullae [Mech. Dev. 109 (2001) 123], and TGF-beta superfamily members lead to the formation of UBs with clear stalks and ampullae. This indicates that positive (i.e., growth and branch promoting) and negative (i.e., growth and branch inhibiting) modulators of UB morphogenesis can cooperate in the formation of slender arborized UB structures similar to those observed in the intact developing kidney or in whole embryonic kidney organ culture. Finally, purification data also indicate the presence of an as yet unidentified soluble non-heparin-binding activity modulating UB growth and branching. The data suggest how contributions of positive and negative growth factors can together (perhaps as local bipolar morphogenetic gradients existing within the mesenchyme) modulate the vectoral arborization pattern of the UB and shape branches as they develop, thereby regulating both nephron number and tubule/duct caliber. We suggest that TGF-beta-like molecules and other non-heparin-binding inhibitory factors can, in the appropriate matrix context, facilitate "braking" of the branching program as the UB shifts from a rapid branching stage (governed by a feed-forward mechanism) to a stage where branching slows down (negative feedback) and eventually stops.  相似文献   

20.
Development of metanephric kidney begins with ureteric bud outgrowth from the Wolffian duct (WD). GDNF is believed to be a crucial positive signal in the budding process, but the negative regulation of this process remains unclear. Here, we examined the role of activin A, a member of TGF-beta family, in bud formation using an in vitro WD culture system. When cultured with the surrounding mesonephros, WDs formed many ectopic buds in response to GDNF. While the activin signaling pathway is normally active along the non-budding WD (as measured by expression of activin A and phospho-Smad2/3), activin A was absent and phospho-Smad2/3 was undetectable in the ectopic buds induced by GDNF. To examine the role of activin A in bud formation, we attempted to inactivate activin action. Interestingly, the addition of neutralizing anti-activin A antibody potentiated GDNF action. To further clarify the role of activin A, we also tested the effect of activin blockade on the WD cultured in the absence of mesonephros. WDs without mesonephros did not form ectopic buds even in the presence of GDNF. In contrast, blockade of activin action with a variety of agents acting through different mechanisms (natural antagonist, neutralizing antibodies, siRNA) enabled GDNF to induce ectopic buds. Inhibition of GDNF-induced bud formation by activin A was accompanied by inhibition of cell proliferation, reduced expression of Pax-2, and decreased phosphorylation of PI3-kinase and MAP kinase in the WD. Our data suggest that activin A is an endogenous inhibitor of bud formation and that cancellation of activin A autocrine action may be critical for the initiation of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号