首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the role of the germinal vesicle (GV) on in vitro maturation (IVM) of rat oocytes, we examined protein synthesis during IVM by comparing polypeptide patterns in control and enucleated oocytes using one and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Separation of polypeptides extracted from the cytoplasm of GV by one-dimensional SDS-PAGE revealed that a 55 kDa polypeptide was present only in the GVs of rat oocytes. At 0, 12, 24, 36, and 44 hr after PMSG injection, prior to the initiation of maturation, enucleated oocytes synthesized the same major polypeptides as cumulus intact (CI) oocytes. During meiotic maturation, no major changes were detected in protein synthesis from prophase (GV stage) to prometaphase I (0–6 hr IVM). However, after entry into prometaphase I (7 hr IVM), striking changes were seen; a 24 kDa polypeptide disappeared and expression of a 34 kDa polypeptide became stronger. This pattern lasted until metaphase II. We detected no major differences in the pattern of protein synthesis between CI and enucleated oocytes using two-dimensional PAGE. These results indicate that protein synthesis in the maturing rat oocyte is controlled by cytoplasmic regulators rather than intrinsic nuclear components. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The organization of chromatin and cytoplasmic microtubules changes abruptly at M-phase entry in both mitotic and meiotic cell cycles. To determine whether the early nuclear and cytoplasmic events associated with meiotic resumption are dependent on protein synthesis, cumulus-enclosed hamster oocytes were cultured in the presence of 100 micrograms/ml puromycin or cycloheximide for 5 hr. Both control (untreated) and treated oocytes were analyzed by fluorescence microscopy after staining with Hoechst 33258 and tubulin antibodies. Freshly isolated oocytes exhibit prominent nucleoli and diffuse chromatin within the germinal vesicle as well as an interphase network of cytoplasmic microtubules. After 4-4.5 hr in culture, most oocytes were in prometaphase I of meiosis as characterized by a prominent spindle with fully condensed chromosomes and numerous cytoplasmic asters. After 5-5.5 hr in culture, microtubule asters are no longer detected in most cells, and the spindle is the only tubulin-positive structure. Incubation for 5 hr in the presence of inhibitors does not impair germinal vesicle breakdown, chromatin condensation, kinetochore microtubule assembly, or cytoplasmic aster formation in the majority of oocytes examined; however, under these conditions, a population of oocytes retains a germinal vesicle, exhibiting variable degrees of chromatin condensation and cytoplasmic aster formation. Meiotic spindle formation is inhibited in all oocytes. These effects are fully reversible upon culture of treated oocytes in drug-free medium for 5 hr. The data indicate that meiotic spindle assembly is dependent on ongoing protein synthesis in the cumulus-enclosed hamster oocyte; in contrast, chromatin condensation and aster formation are not as sensitive to protein synthesis inhibitors during meiotic resumption.  相似文献   

3.
Oocyte maturation (OM) is initiated in lower vertebrates and echinoderms when maturation-inducing substances (MIS) bind oocyte membrane receptors. This study tested the hypothesis that activation of a Gi protein is necessary for MIS-mediated OM in spotted seatrout. Addition of MIS significantly decreased adenylyl cyclase activity in a steroid specific, pertussis toxin (PTX)-sensitive manner in oocyte membranes and microinjection of PTX into oocytes inhibited MIS-induced OM, suggesting the steroid activates a Gi protein. MIS significantly increased [35S]GTPγS binding to ovarian membranes, confirming that MIS receptor binding activates a G-protein, and immunoprecipitation studies showed the increased [35S]GTPγS binding was associated with Gαi1-3 proteins. Radioligand binding studies in ovarian membranes using GTPγS and PTX demonstrated that the MIS binds a receptor coupled to a PTX-sensitive G-protein. This study provides the first direct evidence in a vertebrate model that MIS-induced activation of a Gi protein is necessary for OM. These results support a mechanism of MIS action involving binding to a novel, G-protein coupled receptor and activation of an inhibitory G-protein, the most comprehensive and plausible model of MIS initiation of OM proposed to date.  相似文献   

4.
This study investigated the interactive effects of cyanoketone (CK), an inhibitor of 3β-hydroxysteroid dehydrogenase on the effects of cAMP and forskolin (FK) on oocyte maturation inClarias batrachus using an in vitro incubation technique. When the oocytes were incubated in the presence of 1 Μg/ml 17α, 20β-dihydroxy-4-pregnen-3-one[l7α, 20Β-DP, the maturation-inducing steroid (MIS) of this species] for 6h, they matured [85.3 + 1.36% germinal vesicle breakdown (GVBD)] normally after additional incubation for 20–30 h in plain medium. On the other hand, exposure to 1.0 and 8 0 mM of cAMP after MIS stimulation caused significant inhibition of GVBD but lower concentrations (0.1 and 0.5 mM) of cAMP were noninhibitory. However, when the oocytes were preincubated for 1 h with 1 μg/mI CK, a significant inhibition in the percentage of GVBD was recorded including the lower concentrations of cAMP. FK, an activator of adenylate cyclase, could significantly induce GVBD at all of its concentrations (0.1, 0.5, 1.0 and 10.0 μM) in a dose- and time-dependent manner. However, when the oocytes were exposed to 1 μg/ml CK for 1 h, prior to FK stimulation, a complete inhibition of GVBD occurred but when CK treatment was given after the FK stimulation, only a partial inhibition of maturation was observed. Taken together, these data indirectly suggest that FK induces catfish oocyte maturation probably by stimulating follicular production of Δ4 steroid ( 17α,20 β-DP)through an adenylate cyclase-c AMP-mediated pathway, a mechanism identical to the gonadotropin-induced oocyte maturation.  相似文献   

5.
The germinal vesicle (GV) of Xenopus laevis is an enormous nucleus that contains 18 giant lampbrush chromosomes and thousands of inclusions. The inclusions are primarily of three types: approximately 1500 extrachromosomal nucleoli, 50-100 Cajal bodies, and several thousand B-snurposomes, which correspond to speckles or interchromatin granule clusters in other nuclei. The large size and abundance of the GV organelles, as well as the ease with which they can be studied both in vivo and in vitro, make the GV an ideal object for analysis of nuclear structure and function.  相似文献   

6.
The Ascidiacea, the invertebrate chordates, includes three orders; the Stolidobranchia is the most complex. Until the present study, the onset of oocyte maturation (germinal vesicle breakdown) had been investigated in only a single pyurid (Halocynthia roretzi), in which germinal vesicle breakdown (GVBD) begins when the oocyte contacts seawater (SW); nothing was known about internal events. This study strongly suggests the importance of protein phosphorylation in this process. Herdmania pallida (Pyuridae) functions like H. roretzi; GVBD occurs in SW. Oocytes of Cnemidocarpa irene (Styelidae) do not spontaneously undergo GVBD in SW but must be activated. Herdmania oocytes are inhibited from GVBD by pH 4 SW and subsequently activated by mastoparan (G-protein activator), A23187 (Ca2+ ionophore) or dimethylbenzanthracene (tyrosine kinase activator). This requires maturation promoting factor (MPF) activity; cyclin-dependent kinase inhibitors roscovitine and olomoucine are inhibitory. It also entails dephosphorylation as demonstrated by the ability of the phosphatase inhibitor vitamin K3 to inhibit GVBD. GVBD is also inhibited by the tyrosine kinase inhibitors tyrphostin A23 and genistein, and LY-294002, a phosphatidylinositol-3-kinase inhibitor previously shown to inhibit starfish GVBD. LY-294002 inhibits strongly when activation is by mastoparan or ionophore but not when activated by dimethylbenzanthracene (DMBA). The DMBA is hypothesized to phosphorylate a phosphatase directly or indirectly causing secondary activation, bypassing inhibition.  相似文献   

7.
The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.  相似文献   

8.
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

9.
10.
《Reproductive biology》2022,22(3):100668
SET is a multifunctional protein involved in a variety of molecular processes such as cell apoptosis and cell-cycle regulation. In ovaries SET is predominantly expressed in theca cells and oocytes. In polycystic ovary syndrome (PCOS) patients the expression of SET was increased than healthy people. The current study was designed to determine whether SET plays a role in oocyte maturation and apoptosis, which may provide clues for the underlying pathological mechanism of follicular development in PCOS patients. Oocytes at germinal vesicle (GV) stage were collected from 6-week-old female ICR mice ovaries. The expression of SET was manipulated by AdCMV-SET and AdH1-SiRNA/SET adenoviruses. SET overexpression improved oocyte maturation whereas SET knockdown inhibited oocyte maturation. Moreover, SET negatively regulated serine/threonine protein phosphatase 2A (PP2A) activity in oocytes. Treatment with PP2A inhibitor okadaic acid (OA) promoted oocyte maturation. Furthermore, PP2A knockdown confirmed the role of PP2A in oocyte maturation, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition on oocyte maturation. The central role of PP2A in SET-mediated regulation of oocyte maturation was confirmed by the finding that SET increased the expression of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) and PP2A inhibited their expressions. Besides, SET inhibited oocyte apoptosis through decreasing the expression of caspase 3 and caspases 8, while PP2A had no effect on oocyte apoptosis. SET promoted oocyte maturation by inhibiting PP2A activity and inhibited oocyte apoptosis in mouse in-vitro cultured oocytes, which may provide a pathologic pathway leading to impaired oocyte developmental competence in PCOS.  相似文献   

11.
12.
It was previously demonstrated that inhibition of cAMP degradation with phosphodiesterase type 3 (PDE3) inhibitors resulted in the maintenance of bovine cumulus–oocyte complexes (COC) and denuded oocytes (DO) in meiotic arrest, while a PDE4 inhibitor was without effect. In this study, different inhibitors of PDE3 and PDE4 were tested for their effects on bovine oocyte nuclear maturation. Bovine COC and DO were cultured in TCM-199+10% fetal bovine serum (FBS) with or without different concentrations of the PDE inhibitors. The PDE3 inhibitor trequinsin significantly increased the percentage of COC remaining at the germinal vesicle (GV) stage after 7 h of culture (19.3, 60.3, and 67.8% GV for control and trequinsin 10 and 50 nM, respectively) while Ro 20-1724 (a PDE4 inhibitor) was without effect. In DO, only trequinsin at 10 nM had a significant effect after 7 h of culture (51.3 and 86.1% GV for control and trequinsin 10 nM, respectively). Trequinsin reduced the percentage of COC reaching the mature phase after 22 h, but was without effect on DO. The protein kinase A (PKA) inhibitor H-89 reversed the inhibitory effect of trequinsin in COC and DO, indicating that inhibition of nuclear maturation by trequinsin involves activation of PKA. Trequinsin increased cAMP concentrations in COC but not in DO, suggesting that cumulus cells may also contain a PDE3 isoenzyme.  相似文献   

13.
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.  相似文献   

14.
The inhibition of progesterone-induced oocyte maturation by diisopropylfluorophosphate (DFP), a typical serine protease inhibitor, was investigated in oocytes of the Japanese toad Bufo japonicus for the first time. Oocytes to which DFP was externally applied did not undergo germinal vesicle breakdown (GVBD), which is an early signal of oocyte maturation, in response to progesterone. The more inhibitory period was found to be 0–0.5 GVBD50 on a relative time scale [when the time at which 50% of the oocytes had completed GVBD (GVBD50) was set at 1.0], namely, before the beginning of GVBD. DFP-sensitive proteases, which seem to be multifunctional nonlysosomal protease complexes (proteasomes), may already be present in the cytosol of premature oocytes. Peptide hydrolyzing activity, as reflected by proteasome activity, was found to be regulated before and after GVBD. In addition, immunoblotting regarding the native electrophoretic protein profile of the proteasomes throughout the maturational process demonstrated that they undergo alterations in mobility dependent upon the maturational process. These findings raise the possibility that the activities of some endogenous DFP-sensitive proteasomes play distinct, essential roles in oocyte maturation triggered by progesterone in Bufo. © 1994 Wiley-Liss, Inc.  相似文献   

15.
《Reproductive biology》2022,22(1):100593
Cumulus cell expansion is required for the ovulation of a fertilizable oocyte. Extracellular vesicles (EVs) are bilayer-lipid membrane vesicles that may be found in a variety of bodily fluids and play an important role in biological processes. This study aimed to examine the effects of plasma-derived EVs on cumulus expansion and in vitro maturation (IVM) of the oocyte. EVswere isolated using ultracentrifugation from the plasma of female mice. The morphology and size of EVs were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Western blotting allowed us to identify CD63, CD81, CD9, and HSP70 protein markers of EVs; the expression of the genes related to cumulus cell expansion, including hyaluronan synthase 2 (Has2) and prostaglandinendoperoxide synthase 2 (Ptgs2), were assessed using real-time polymerase chain reaction. Plasma-derived EVs labeled with Dil dye were successfully incorporated with cumulus cells during IVM. Plasma-derived EVs significantly induced cumulus expansion and maturation of oocytes. The percentage of oocytes that reached the MII stage was significantly greater in the EVs treatment group compared with other groups. Although treatment with epidermal growth factor (EGF) significantly increased cumulus expansion in cumulus-oocyte complexes (COCs), the impact was less than that seen with plasma-derived EVs. Furthermore, EVs generated from plasma substantially enhanced Has2 and Ptgs2 mRNA expression in the cumulus-oocyte complex. This research indicates that EVs derived from plasma are capable of promoting cumulus expansion and oocyte maturation.  相似文献   

16.
Regulation of animal oocyte maturation is hypothesized to involve heterotrimeric G-proteins. It is difficult to test this hypothesis though without knowing what G-proteins are present in these cells and where are they localized. We set out to test the hypothesis that G-proteins regulate maturation in the sea urchin oocyte by identifying resident G-proteins in oocytes and eggs, and then investigating their function. We find four families of G-protein alpha-subunits (Galphai, Galphaq, Galphas, and Galpha12) present in both oocytes and eggs of the sea urchin. Three of them, Galphai, Galphaq, and Galphas are present on the plasma membrane of the oocyte, while the fourth is located on cytoplasmic vesicles. Upon oocyte maturation, these proteins remain in eggs, and continue to be expressed in embryonic tissues. To test the functional contribution of the G-proteins to the regulation of oocyte maturation, we employ specific intervening reagents, including antibodies and competitor peptides to each Galpha subunit, and specific Galpha toxins. We find that Gi is a main candidate for a positive regulator of sea urchin oocyte maturation. These studies provide a foundation to further test specific hypotheses of the G-protein mediated regulation of oocyte maturation, fertilization, and early development in the sea urchin.  相似文献   

17.
18.
 By monitoring 45Ca2+ influx and efflux from oocytes a transient increase followed by a transient decrease in the Ca2+-content of progesterone-treated oocytes was observed. Chelation of intracellular Ca2+ with EGTA or BAPTA-type buffers inhibited progesterone-induced GVBD. Buffers with a mid-range Kd (∼1.5 μm) were most effective in inhibiting GVBD whereas buffers with a Kd above or below this value were less effective. These observations indicate that intracellular Ca2+, probably in the form of a localized release, is required for progesterone-induced oocyte maturation. However, Ca2+ alone was insufficient to induce GVBD. When the effects of nocodazole and taxol upon this Ca2+-requirement were tested, we observed that taxol-induced microtubule polymerization not only delayed progesterone-induced GVBD but also completely inhibited it in combination with BAPTA-AM. Conversely, nocodazole-induced microtubule depolymerization in combination with ionophore A23187 not only accelerated progesterone-induced GVBD, but also induced GVBD in the absence of progesterone. The combined treatment of oocytes with nocodazole and InsP3, or with cold treatment and ionophore A23187 also induced GVBD in the absence of progesterone. Thus, Ca2+ and microtubule depolymerization synergistically promote GVBD. In both nocodazole- and cold-treated oocytes, the GV was displaced to the periphery of the oocyte and underwent GVBD when treated with A23187. However, when the GV was displaced to the cortex by a centrifugal force under conditions that would not cause microtubule depolymerization and the oocyte was treated with A23187, oocytes did not undergo GVBD. Received: 19 January 1996 / Accepted: 21 May 1996  相似文献   

19.
Park MR  Gupta MK  Lee HR  Das ZC  Uhm SJ  Lee HT 《Theriogenology》2011,75(5):940-950
Phosphatidylinositol-3-kinases (PI3Ks) play pivotal roles in meiotic progression of oocytes from metaphase I to metaphase II stage. Using a Class III-specific inhibitor of PI3K, 3-methyladenine (3MA), this study shows that Class III PI3K may be essential for meiotic progression of porcine oocytes beyond germinal vesicle (GV) stage. Treatment of immature porcine oocytes with 3MA for 22-42 h arrested them at the GV stage, irrespective of the presence or absence of cumulus cells. Furthermore, a significantly high proportion (60.9 ± 13.8%) of 3MA-treated oocytes acquired a nucleolus completely surrounded by a rim of highly condensed chromatin (GV-II stage). The GV-arresting effect of 3MA was, however, completely reversible upon their further culture in the absence of 3MA for 22 h. When cumulus-oophorus-complexes (COCs), arrested at the GV stage for 22 h by 3MA, were further cultured for 22 h in the absence of 3MA, 96.1 ± 1.5% of oocytes reached the MII stage at 42 h of IVM and did not differ from non-treated control oocytes with respect to their ability to fertilize, cleave and form blastocyst (P > 0.05) upon in vitro fertilization (IVF) or parthenogenetic activation (PA). These data suggest that 3MA efficiently blocks and synchronizes the meiotic progression of porcine oocytes at the GV stage without affecting their ooplasmic maturation in terms of post-fertilization/activation in vitro embryonic development. Our data also provide indirect evidence for the likely participation of Class III PI3K in meiotic maturation of porcine oocyte beyond the GV stage.  相似文献   

20.
The Xenopus maternal mRNA D7 is translationally repressed during oogenesis, only becoming recruited into polysomes during oocyte maturation, with D7 protein being detectable for the first time prior to germinal vesicle breakdown (GVBD). The synthesis of D7 protein was found to be induced by a variety of maturation-promoting agents including cyclin, c-mos and crude preparations of MPF. D7 protein induced by all these agents is post-translationally modified and exists as a number of variants of differing molecular weight. In contrast to endogenous D7 mRNA, D7 RNA injected into the stage VI oocyte is efficiently translated, resulting in the accumulation of predominantly unmodified D7 polypeptides, which become increasingly modified during oocyte maturation to produce a pattern of polypeptides similar to those derived from endogenous D7 mRNA. Thus, the system that results in the post-translational modification of the D7 protein is itself activated during oocyte maturation. The nature of the protein modification is not known but does not appear to be phosphorylation. The translation of exogenous D7 RNA in the stage VI oocyte does not lead to translational derepression of endogenous D7 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号