首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In mathematical modeling of multi-segmented articulating total-human-body, there is no doubt that the shoulder complex plays one of the most important roles. However, proper biomechanical passive resistive force data have been lacking in the literature. This paper presents determination of the three-dimensional passive resistive joint properties beyond the maximal voluntary shoulder complex sinus. A functional expansion with two spherical angular variables in the local joint axis system is proposed to fit the overall restoring force (moment) data. A constant restoring force (moment) contour map as well as a three-dimensional perspective view of the results are presented in a new coordinate system defined in this study. Finally, a statistical data base is established by utilizing the statistical analysis procedures discussed in Part I of this paper.  相似文献   

5.
We address the issue of what proprioceptive information, regarding movement of the human arm, may be provided to the central nervous system by proprioceptors located within muscles of this limb. To accomplish this we developed a numerical simulation which could provide estimates of the length regimes experienced by a set of model receptors located within some of the principal muscles of the human arm during planar movement of this limb. These receptors were assumed to have characteristics analogous to those associated with a simple model of muscle spindle signalling of movement. To this end each spindle had proprioceptive ‘channels’ associated with it. These corresponded to primary and secondary spindle afferent fibers which could provide independent afferent output regarding the parent muscle the spindle monitored. The angles of the shoulder and elbow joints attained by subjects performing a task requiring movement of the right arm in a horizontal plane to a static visual target were recorded. For this angular data the lengths and rates of change of lengths experienced by muscle fascicles, and hence the model spindles, during movement were calculated by means of the numerical simulation. The discharge rates of the simulated spindles during the movement were calculated to derive a measure of the depth of modulation, induced by the movement, for each spindle. These values were then summed for all spindles to provide a first-order approximation of spindle ensemble coding of the movement. Significant correlations (0.0001, Spearman's rank order) were found between the resulting ensemble encodings and, in order of significance, the angular velocity of the shoulder joint (), the tangential velocity of the hand (), and the angular velocity of the elbow joint (). Correlations between the angular positions of the shoulder () and elbow () were lower. These findings indicate that the ensemble profiles of the simulated muscle spindles, encode information regarding kinematic parameters of movements related to both intrinsic and extrinsic coordinate systems. This suggests that motor structures capable of deriving such an ensemble encoding would be in a position to perform the sensory-motor transformations between intrinsic and extrinsic frames of reference necessary for controlling movements planned in extrinsic coordinates. Received: 12 August 1994 / Accepted in revised form: 17 June 1996  相似文献   

6.
This study investigated shoulder complex joint kinematics and functional outcomes before and after full-thickness supraspinatus rotator cuff repair. Nine adults (mean age 63.4 ± 6.2 years) participated in three test sessions: 0–12 weeks pre-operatively, 9–12 weeks, and 22–30 weeks post-operatively. Upper extremity kinematics of the surgical arm’s glenohumeral, acromioclavicular, sternoclavicular and thoracohumeral joints over the duration of a hair combing task were quantified with motion analysis using inverse kinematics. The UCLA Shoulder Rating and Simple Shoulder Test shoulder health outcomes were administered at each session to determine patients’ perceived function of their surgical shoulder. Results indicated multiple significant increases over time among the three joints comprising the shoulder complex in the coronal and transverse planes, despite no increases in thoracohumeral motion, and suggest that thoracohumeral motion alone does not provide a comprehensive assessment. Interestingly, more significant increases were observed at the 6-month evaluation than the 3-month evaluation, which is not aligned with the standard rehabilitation endpoint. Thus, our findings suggest that clinicians should evaluate all joints of the shoulder complex during longer-term rehabilitation assessment. Ultimately, knowledge of patients’ pre-operative and post-operative shoulder complex kinematics may help to improve rehabilitation to promote improved patient outcomes.  相似文献   

7.
We aimed to determine the role of the wrist, elbow and shoulder joints to single-finger tapping. Six human subjects tapped with their index finger at a rate of 3 taps/s on a keyswitch across five conditions, one freestyle (FS) and four instructed tapping strategies. The four instructed conditions were to tap on a keyswitch using the finger joint only (FO), the wrist joint only (WO), the elbow joint only (EO), and the shoulder joint only (SO). A single-axis force plate measured the fingertip force. An infra-red active-marker three-dimensional motion analysis system measured the movement of the fingertip, hand, forearm, upper arm and trunk. Inverse dynamics estimated joint torques for the metacarpal-phalangeal (MCP), wrist, elbow, and shoulder joints. For FS tapping 27%, 56%, and 18% of the vertical fingertip movement were a result of flexion of the MCP joint and wrist joint and extension of the elbow joint, respectively. During the FS movements the net joint powers between the MCP, wrist and elbow were positively correlated (correlation coefficients between 0.46 and 0.76) suggesting synergistic efforts. For the instructed tapping strategies (FO, WO, EO, and SO), correlations decreased to values below 0.35 suggesting relatively independent control of the different joints. For FS tapping, the kinematic and kinetic data indicate that the wrist and elbow contribute significantly, working in synergy with the finger joints to create the fingertip tapping task.  相似文献   

8.
This study investigated how baseball players generate large angular velocity at each joint by coordinating the joint torque and velocity-dependent torque during overarm throwing. Using a four-segment model (i.e., trunk, upper arm, forearm, and hand) that has 13 degrees of freedom, we conducted the induced acceleration analysis to determine the accelerations induced by these torques by multiplying the inverse of the system inertia matrix to the torque vectors. We found that the proximal joint motions (i.e., trunk forward motion, trunk leftward rotation, and shoulder internal rotation) were mainly accelerated by the joint torques at their own joints, whereas the distal joint motions (i.e., elbow extension and wrist flexion) were mainly accelerated by the velocity-dependent torques. We further examined which segment motion is the source of the velocity-dependent torque acting on the elbow and wrist accelerations. The results showed that the angular velocities of the trunk and upper arm produced the velocity-dependent torque for initial elbow extension acceleration. As a result, the elbow joint angular velocity increased, and concurrently, the forearm angular velocity relative to the ground also increased. The forearm angular velocity subsequently accelerated the elbow extension and wrist flexion. It also accelerated the shoulder internal rotation during the short period around the ball-release time. These results indicate that baseball players accelerate the distal elbow and wrist joint rotations by utilizing the velocity-dependent torque that is originally produced by the proximal trunk and shoulder joint torques in the early phase.  相似文献   

9.
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.  相似文献   

10.
In recent years, owing to their versatility and reduced cost of operation, multisegmented mathematical models of the total human body have gained increased attention in gross biodynamic motion studies. This, in turn, has stimulated the need for a proper biomechanical data base for the major human articulating joints. The lack of such a database for the humero-elbow complex is the impetus for this study. The total angular range of motion permitted by the complex and the passive resistive properties beyond the full elbow extension were studied. Results obtained on ten normal male subjects were utilized to establish a statistical data base for the humero-elbow complex. Results are also expressed in functional expansion form suitable for incorporation into the existing multisegmented models.  相似文献   

11.
12.
Assessments of shoulder dynamics (e.g. the inertial, viscous, and stiffness properties of the joint) can provide important insights into the stability of the joint at rest and during volitional contraction. The purpose of this study was to investigate how arm posture influences shoulder dynamics while generating pushing or pulling torques in the horizontal plane. Sixteen healthy participants were examined in seven postures encompassing a large workspace of the shoulder. At each posture, the participant’s shoulder was rapidly perturbed while measuring the resultant change in shoulder torque about the glenohumeral axis. Participants were examined both at rest and while producing horizontal flexion and extension torques scaled to 15% of a maximum voluntary contraction. Shoulder stiffness, viscosity, and damping ratio were estimated using impedance-based matching, and changes in these outcome measures with torque level, elevation angle, and plane of elevation angle were explored with a linear mixed effects model. Shoulder stiffness was found to decrease with increasing elevation angles (p < 0.001) without subsequent changes in viscosity, leading to a greater damping ratios at higher elevation angles (p < 0.001). Shoulder stiffness, viscosity, and damping ratio (all p < 0.05) were all found to significantly increase as the plane of elevation of the arm was increased. The relationship between the viscosity, stiffness and the damping ratio of the shoulder is one that the central nervous system must regulate in order to maintain stability, protect against injury, and control the shoulder joint as the inertial and muscle contributions change across different arm postures.  相似文献   

13.
In multi-segmented total-human-body models the most difficult and the least successful modeling of a major articulating joint has been the shoulder complex because of the lack of appropriate biomechanical data as well as the anatomical complexity of the region. In this paper, quantitative results on the three-dimensional passive resistive properties beyond the voluntary shoulder complex sinus are presented by applying the methodology developed in part I. Constant-restoring-force(moment) contours are established for the shoulder complex and the numerical results are presented for the three subjects tested. In addition, functional expansions are presented for the voluntary and restoring force(moment) contours using spherical coordinates.  相似文献   

14.
Voluntary arm-raising movement performed during the upright human stance position imposes a perturbation to an already unstable bipedal posture characterised by a high body centre of mass (CoM). Inertial forces due to arm acceleration and displacement of the CoM of the arm which alters the CoM position of the whole body represent the two sources of disequilibrium. A current model of postural control explains equilibrium maintenance through the action of anticipatory postural adjustments (APAs) that would offset any destabilising effect of the voluntary movement. The purpose of this paper was to quantify, using computer simulation, the postural perturbation due to arm raising movement. The model incorporated four links, with shoulder, hip, knee and ankle joints constrained by linear viscoelastic elements. The input of the model was a torque applied at the shoulder joint. The simulation described mechanical consequences of the arm-raising movement for different initial conditions. The variables tested were arm inertia, the presence or not of gravity field, the initial standing position and arm movement direction. Simulations showed that the mechanical effect of arm-raising movement was mainly local, that is to say at the level of trunk and lower limbs and produced a slight forward displacement of the CoM (1.5 mm). Backward arm-raising movement had the same effect on the CoM displacement as the forward arm-raising movement. When the mass of the arm was increased, trunk rotation increased producing a CoM displacement in the opposite direction when compared to arm movement performed without load. Postural disturbance was minimised for an initial standing posture with the CoM vertical projection corresponding to the ankle joint axis of rotation. When the model was reduced to two degrees of freedom (ankle and shoulder joints only) the postural perturbation due to arm-raising movement increased compared to the four-joints model. On the basis of these results the classical assumption that APAs stabilise the CoM is challenged.  相似文献   

15.
Understanding how an arm swing enhances performance in the vertical jump   总被引:1,自引:0,他引:1  
This investigation was conducted to examine the various theories that have been proposed to explain the enhancement of jumping performance when using an arm swing compared to when no arm swing is used. Twenty adult males were asked to perform a series of maximal vertical jumps while using an arm swing and again while holding their arms by their sides. Force, motion and electromyographical data were recorded during each performance. Participants jumped higher (0.086 m) in the arm swing compared to the no-arm swing condition and was due to increased height (28%) and velocity (72%) of the center of mass at take-off. The increased height at take-off was due to the elevation of the arm segments. The increased velocity of take-off stemmed from a complex series of events which allowed the arms to build up energy early in the jump and transfer it to the rest of the body during the later stages of the jump. This energy came from the shoulder and elbow joints as well as from extra work done at the hip. This energy was used to (i) increase the kinetic and potential energy of the arms at take-off, (ii) store and release energy from the muscles and tendons around the ankle, knee and hip joint, and (iii) ‘pull’ on the body through an upward force acting on the trunk at the shoulder. It was concluded that none of the prevailing theories exclusively explains the enhanced performance in the arm swing jump, but rather the enhanced performance is based on several mechanisms operating together.  相似文献   

16.
In this paper, a musculo-skeletal model of the upper limb is presented. The limb is modelled as a three-dimensional 7 degrees-of-freedom system, linked to the shoulder, which has been considered as frame. The upper limb model is made up of four links corresponding to the most important body segments: the humerus, the ulna, the radius and the hand, considered as a single rigid body. Particular attention has been paid to the modelling of joints in order to mimic all the possible arm and forearm movements (including prono-supination). The model also includes 24 muscles. The mathematical model used to describe the muscles is that proposed by Zajac in 1989, modified by the authors. The kinematic analysis has been performed including an ergonomics index to take into account the posture and joint physical limits. Moreover an optimization criterion based on minimum activation pattern has been included in order to find muscular activation coefficients. The results of the proposed methodology concerning muscular activations have been compared to those coming from processed EMG signals, which have been acquired during experimental tests.  相似文献   

17.
Simultaneous motion of the scapula and humerus is widely accepted as a feature of normal upper limb movement, however this has usually been investigated under conditions in which purposeful, functional tasks were not considered. The aim of this study was to investigate the synchrony and coordination of the constituent 3D movements of the shoulder girdle and trunk, during a functional activity. 45 healthy women, aged between 20 and 80 years, performed a simple lifting task, moving a loaded box from a shelf at waist level to one at shoulder level and then reversed the movement, during which the linear and angular motions of the scapulae, upper and lower thoracic spine and upper limbs were monitored and analysed using cross-correlation techniques. Results indicated a close and consistent set of coordinated movement patterns, which suggest biomechanical invariance in the responses of the structures adjacent to the upper limb during such a lifting task. These scapulohumeral relationships were, however, more constant and phase-locked when there was a specific purpose to the movement than during periods in which the arm was lowered without load. There were no age-related differences in any movement responses.  相似文献   

18.
The purpose of this study was to investigate the validity of hydrodynamic force estimation in swimming as calculated by the quasi-static approach. To achieve this a full-scale mechanical arm was developed, built and tested. The mechanical arm, covered with a prosthetic shell and driven at the shoulder was used to simulate a single plane underwater rotation at four elbow configurations. A computer program controlled the shoulder movement to achieve a replicable angular velocity profile for each arm movement. A strain gauge system was used to directly measure the generated arm torque. Repeated trials were conducted at fixed elbow angles of 110 degrees, 135 degrees, 160 degrees and 180 degrees. All trials were filmed using a three-dimensional underwater set-up. Each trial was digitised at 25 Hz and the hydrodynamic drag force profile of the hand calculated using the quasi-static procedure. From these data, the estimated shoulder torque was calculated and compared to the direct measurement of shoulder torque from the mechanical arm. The results showed that the arm produced a repeatable movement through the water. The shoulder torque profiles using the direct measure (the arm) and the indirect measures (quasi-static approach) differed considerably. The quasi-static approach appears not to accurately reflect the hydrodynamic force profile generated by the arm movement in swimming. Furthermore, it seems that the swimmer's hand contribution is overstated in up to date studies. It is essential that the propulsive mechanisms in swimming be further investigated if factors underpinning an optimal technique are to be established.  相似文献   

19.
The effect of arm movements and movements of individual arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements was studied under the conditions of horizontal support of the upper and lower limbs. The horizontal support of arms provided a significant increase in the rate of activation of locomotor automatism by noninvasive impact on tonic sensory inputs. The addition of active arm movements during involuntary stepping-like leg movements led to an increase in the EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of knee and hip joints. At the same time, the movement of forearms and wrists had a similar facilitating effect on the physiological and kinematic characteristics of rhythmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of subthreshold vibration of leg muscles, voluntary arm movements led to activation of involuntary rhythmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhythmic stepping than during involuntary leg movements. Thus, the simultaneous movements of the upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries, Parkinson’s disease, and other neurological diseases.  相似文献   

20.
In the process of swimming, the shoulder joint will be damaged when the arm is stroking. To reduce the injury of shoulder joints and improve the speed of stroke, it is necessary to train the flexibility of shoulder joints. This paper briefly introduced the concept of shoulder joint and flexibility and then explained the traditional stretching training method and proprioceptive neuromuscular facilitation (PNF) stretching method. Then, taking 20 college team swimmers of Yunnan University as the subjects, the comparative experiment of the traditional and PNF stretching methods was carried out. The results showed that the shoulder rotation index of the athletes after the use of the PNF stretching method was significantly lower compared with the traditional stretching method; under the PNF stretching method, the average power and total work of shoulder joints significantly improved in the high-speed external rotation, and the performance in the 50 m freestyle also significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号