首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Albendazole (ABZ), a benzimidazole carbamate used for the treatment of several human helminthiases has high affinity for tubulin, which results in an inhibition of microtubule polymerization, blocking several vital processes in the parasites, such as motility and nutrient uptake. The ability of ABZ to act as mitotic spindle poison leads to a potential risk for aneuploidy induction in exposed human beings. ABZ, as well as albendazole sulphoxide (ABZSO), its main metabolite, induce micronuclei in human cells in a dose-dependent manner. Despite recognition that ABZ and ABZSO increase micronucleus frequency, their potential as inducers of non-disjunction in human cells, an event considered more frequent than chromosome loss, and one of the main mechanisms involved in aneuploidy induction, has not been evaluated. In the present work, we investigated the ability of ABZ and ABZSO to induce non-disjunction in cultured human lymphocytes. Non-disjunction was scored by chromosome-specific FISH using a classical or alpha satellite probe for chromosomes 1 and 7, respectively. Significant increase in non-disjunction events that involved either chromosome were observed in cells treated with ABZ or ABZSO. Both ABZ and ABZSO induced non-disjunction at lower concentrations than those at which MN were observed.  相似文献   

2.
Threshold mechanisms of activity for mutagenic agents have been debated for some time, especially for those substances which induce aneuploidy by inhibiting mitotic spindle function. No observed effect levels (NOELs) or "practical thresholds" have been demonstrated for several aneugens both in vitro and in vivo generally by either counting chromosomes in metaphase preparations or by observing micronuclei. Recently, fluorescence in situ hybridization (FISH) has proven to be a sensitive and useful technique for the assessment of aneuploidy at low concentrations. Using binucleate human lymphocytes coupled with FISH, we have been able to characterize a threshold mechanism of action for two spindle inhibitors, benomyl and its active metabolite, carbendazim. Test chemicals were added 24 h following culture initiation. After a further 20 h, cytochalasin B was added, and cells were harvested 28 h later (72 h post initiation). The distribution of chromosomes between the nuclei of binucleate cells was evaluated by fluorescence microscopy for the simultaneous detection of centromeres labeled with FITC (green) or Cy-3 (red). Six human chromosomes were investigated in pairs (1 and 8, 11 and 18, and X and 17). Abnormalities were classified as chromosome loss (including centromeric positive micronuclei), chromosome gain, non-disjunction, or polyploidy. Dose-response data were generated over a range of closely spaced concentrations at 100 ng/ml intervals. The threshold, defined as the lowest "effect" concentration using statistical methods, was determined for each chromosome. Non-disjunction proved to be the most sensitive endpoint for the detection of aneuploidy occurring at higher frequencies and lower concentrations. Results for the six chromosomes demonstrated similar dose-response data which included a series of concentrations with no statistically significant increase above background, followed by a second range of higher concentrations with a statistically significant, concentration-dependent increase. Nearly equimolar threshold concentrations were determined for benomyl- and carbendazim-induced non-disjunction.  相似文献   

3.
To study the origin of micronuclei induced in human primary fibroblasts by low-energy protons (7.7 and 28.5 keV/microm) and X rays, we have developed a combined antikinetochore-antibody (CREST) and FISH staining with pancentromeric probes. This technique allowed us to analyze the integrity of the kinetochore and centromeric DNA structures and to assess their role in induced aneuploidy. The effect of LET on radiation-induced chromosome nondisjunction was studied in binucleated cells with centromeric-specific DNA probes for chromosomes 7 and 11. Our results indicate that, though more than 90% of radiation-induced micronuclei were CREST(-)/FISH(-), 28.5 keV/microm protons and X rays were also able to induce statistically significant increases in the number of micronuclei that were CREST(-)/FISH(+) and CREST(+)/FISH(+), respectively. One interpretation of these results could be that the protons induced chromosome loss by kinetochore detachment or by breakage in the centromeric DNA region, whereas X rays induced aneuploidy through a non-DNA damage mechanism. Nondisjunction appears to be a far more important mechanism leading to radiation-induced aneuploidy. Irrespective of the higher frequency of micronuclei induced by 28.5 keV/microm protons, the frequency of chromosome loss was markedly higher for X rays than for 28.5 keV/microm protons, strengthening the hypothesis that non-DNA targets, such as components of the mitotic spindle apparatus, may be involved in aberrations in chromosome segregation after X irradiation.  相似文献   

4.
Okadaic acid (OA) is a marine toxin produced by dinoflagellates and responsible for human intoxications. OA is a specific inhibitor of serine/threonine protein phosphatases PP1 and PP2A and a potent tumor promoter in mouse skin and rat glandular stomach. In a previous study, we demonstrated that OA induced aneuploidy in CHO-K1 cells using the cytokinesis-block micronucleus (CBMN) assay coupled to FISH and concluded that OA was not a direct mutagen. As some previous in vitro mutagenicity studies had given positive results with OA, we decided to perform two additional in vitro mutagenicity assays in accordance with the OECD guidelines: (i) the CHO/Hprt test, which provides end points about locus-specific gene mutation; (ii) the in vitro unscheduled DNA synthesis (UDS) assay in rat hepatocytes, which measures [(3)H]thymidine incorporation into DNA undergoing excision repair. In the CHO/Hprt assay, there was no significant increase in the number of mutants for doses ranging from 5 to 5000 nM in the presence or absence of rat liver S9 fraction. In the in vitro UDS assay, OA did not induce primary DNA damages in rat hepatocytes following 18 h exposure at concentrations between 1.32 and 100 nM. As OA could affect the DNA repair systems via the inhibition of protein phosphatases, its effects on the repair kinetic of 2AAF-induced DNA damage were also investigated with the UDS assay. The results showed that OA did not interact with the DNA-repair process involved in in vitro UDS in rat hepatocytes. We concluded that OA failed to induce direct DNA damage but acted principally by altering the chromosome number, which could contribute to its carcinogenic effect.  相似文献   

5.
Wang X  Thomas P  Xue J  Fenech M 《Mutation research》2004,551(1-2):167-180
Folate plays a critical role in the prevention of chromosome breakage and hypomethylation of DNA. Deficiency in this vitamin may lead to demethylation of heterochromatin causing structural centromere defects that could induce abnormal distribution of replicated chromosomes during nuclear division. Because aneuploidy of chromosomes 17 and 21 is often observed in breast cancer and leukaemia and increased risk for these cancers is associated with folate deficiency, we hypothesized that folate deficiency may lead to aneuploidy of chromosomes 17 and 21. To test these hypotheses we cultured lymphocytes from eight female volunteers (aged 40-48 years) in RPMI 1640 medium containing 12 or 120nM of folic acid (FA) or 5-methyltetrahydrofolate (MF) for 9 days. Chromosomes 17 and 21 aneuploidies induced by folate deficiency were measured in mononucleated (MONO) and cytokinesis-blocked binucleated (BN) lymphocytes after dual-color fluorescent in situ hybridization (FISH) with a digoxigenin-labeled probe for the alphoid satellite sequence of chromosome 17 and a biotin-labeled probe for the pericentric region of chromosome 21. The results showed that 12nm of MF or FA caused a significant 26-35% increment in frequency of aneuploidy of chromosome 17 (P = 0.0017) and aneupoidy of chromosome 21 (P = 0.0008) relative to 120nM MF or FA. The pattern of aneuploidy in binucleated cells was significantly correlated with that observed in mononucleated cells (R = 0.51-0.75, P < 0.0004) and was consistent with a model based on chromosome loss or partial aneusomy rescue as the cause rather than non-disjunction, although the latter mechanism could not be excluded. MF was not more efficient than FA in preventing aneuploidy in this in vitro system. We conclude that folate deficiency is a risk factor for chromosomes 17 and 21 aneuploidy.  相似文献   

6.
Centrosome amplification and chromosome abnormality are frequently identified in neoplasia and tumorigenesis. However, the mechanisms underlying these defects remain unclear. We here identify that MCT-1 is a centrosomal oncoprotein involved in mitosis. Knockdown of MCT-1 protein results in intercellular bridging, chromosome mis-congregation, cytokinesis delay, and mitotic death. Introduction of MCT-1 oncogene into the p53 deficient cells (MCT-1-p53), the mitotic checkpoint kinases and proteins are deregulated synergistically. These biochemical alterations are accompanied with increased frequencies of cytokinesis failure, multi-nucleation, and centrosome amplification in subsequent cell cycle. As a result, the incidences of polyploidy and aneuploidy are progressively induced by prolonged cell cultivation or further promoted by sustained spindle damage on MCT-1-p53 background. These data show that the oncoprotein perturbs centrosome structure and mitotic progression, which provide the molecular aspect of chromsomal abnormality in vitro and the information for understanding the stepwise progression of tumors under oncogenic stress.  相似文献   

7.
Microtubule inhibitors are known to block the cell cycle at M-phase, by damaging the mitotic spindle. However, under certain circumstances, cells can escape these effects and become aneuploid, polyploid and/or micronucleated. It is well known that aneuploidy can have adverse effects on human health such as pregnancy wastage, birth defects and the development of human tumours. The present paper aims at reviewing the data our laboratory has accumulated during the last years about the relation between aneuploidy/polyploidy/presence of micronuclei and the induction of apoptosis in human cells after in vitro exposure to the microtubule inhibitor nocodazole. Exposure to high doses of nocodazole results in polyploidy due to mitotic slippage in the absence of a functional spindle. Depending on their p53-status polyploid cells may eventually arrest, die or continue cycling. In these experimental conditions, our data showed that polyploidy does not constitute a strong apoptotic signal. In case of exposure to low concentrations of nocodazole, microtubule depolymerization is disturbed resulting in a spindle with damaged microtubules. This can give rise to chromosome loss and non-disjunction. Our data showed that in particular micronucleated cells, originating from chromosome loss can be eliminated by apoptosis. In addition, nocodazole-induced apoptosis involves the apical caspase-8 and -9 and the effector caspase-3. We show evidence that caspase-3, in addition to its function in apoptosis, plays a role in the formation of micronuclei.  相似文献   

8.
Melphalan (MEL), chlorambucil (CAB) and p-N,N-bis(2-chloroethyl)aminophenylacetic acid (PHE) are nitrogen mustard analogues, which are clinically used as chemotherapeutic agents. They also exert carcinogenic activity. The aim of this study was to investigate the aneugenic potential of the above drugs and the possible mechanism responsible for this activity. The Cytokinesis Block Micronucleus (CBMN) assay in combination with fluorescence in situ hybridization (FISH) was used in human lymphocyte cultures to evaluate micronucleus (MN) frequency. Pancentromeric probe (alpha-satellite) was applied to identify chromosomes in micronuclei and an X-chromosome specific centromeric probe was used to asses micronucleation and non-disjunction of this chromosome in binucleated cells. The effect of the above compounds on the organization of mitotic apparatus, as a possible target of chemicals with aneugenic potential, was investigated in C(2)C(12) mouse cell line by double immunofluorescence of alpha- and gamma-tubulin. We found that the studied drugs increased MN frequency in a linear dose-dependent manner primarily by chromosome breakage and in a lesser extent by an aneugenic mechanism. Non-disjunction and micronucleation of X-chromosome were also induced. Abnormal metaphase cells were linearly increased with concentration and characterized by abnormal centrosome number. Interphase cells with micronuclei and abnormal centrosome number were also observed. Since nitrogen mustards are highly reactive agents, with low selectivity and form covalent bonds with different nucleophilic sites in proteins and nucleic acids, it is reasonable to consider that one possible pathway for nitrogen mustard analogues to exert their aneugenic activity is through reaction with nucleophilic moieties of proteins or genes that are involved in the duplication and/or separation of centrosomes, resulting in abnormal centrosome number. Based on our results the carcinogenicity of nitrogen mustard analogues studied may be attributed not only to their activity to trigger gene mutation and chromosome breakage, but also to their aneugenic potential. Further studies are warranted to clarify the above two hypotheses.  相似文献   

9.
Cancer cells contain an abnormal number of chromosomes (aneuploidy), which is a prevalent form of genetic instability in human cancers. Abnormal amplification of centrosomes and defects of spindle assembly checkpoint are the major causes of chromosome instability in cancer cells. Here we present biochemical evidence to suggest a role of ECRG2, a novel tumor suppressor gene, in maintaining chromosome stability. ECRG2 localized to centrosomes during interphase and kinetochores during mitosis. Further analysis revealed that ECRG2 participates in centrosome amplification in a p53-dependent manner. Depletion of ECRG2 not only destabilized p53, down-regulated p21, and increased the cyclin E/CDK2 activity, thus initiating centrosome amplification, but also abolished the ability of p53 localize to centrosomes. Overexpression of ECRG2 restored the p53-dependent suppression of centrosome duplication. Furthermore, ECRG2-depleted cells show severely disrupted spindle phenotype but fail to maintain the mitotic arrest due to minimal BUBR1 protein levels. Taken together, our results indicate that ECRG2 is important for ensuring centrosome duplication, spindle assembly checkpoint, and accurate chromosome segregation, and its depletion may contribute to chromosome instability and aneuploidy in human cancers.  相似文献   

10.
We have developed a rapid and simple immunodetection assay for the in situ identification of aneuploidy in mitotic fibroblasts. Kinetochore (centromere)-containing micronuclei can be detected easily and rapidly by immunofluorescence. The action of colchicine and its derivatives on the mitotic spindle apparatus of mammalian cells induces chromosome lag and aneuploidy. The treatment of normal human fibroblasts with Colcemid resulted in increased levels of micronuclei. Using an immunofluorescence stain (scleroderma CREST antiserum, biotinylated goat antihuman IgG and streptavidin-Texas Red) to detect the presence of kinetochores, it was observed that 90% of the Colcemid-induced micronuclei contained one or more fluorescent bodies (kinetochores). Cultured skin fibroblasts from a patient with ataxia telangiectasia (AT), which is a chromosome breakage syndrome, were used as a control. The AT fibroblasts exhibited elevated levels of spontaneous micronuclei when compared with normal fibroblasts, and 85% of these micronuclei were kinetochore-negative. This finding supports the hypothesis that the majority of spontaneous micronuclei in AT cells arise from chromosome breakage. The spontaneous micronucleus frequencies for 8 strains of human fibroblasts were in the order of 0.5-2%. Spontaneous levels of kinetochore-positive micronuclei were measured for these 8 strains; in 5 of the strains, about 25% of the micronuclei were kinetochore-positive, and in the other 3 strains approximately 50% of the micronuclei were kinetochore-positive. These data suggest that genetic factors may play a role in the control of the spontaneous levels of chromosome breakage and/or segregation errors which result in aneuploidy.  相似文献   

11.
Aneuploidy may result from abnormalities in the biochemical pathways and cellular organelles associated with chromosome segregation. Monastrol is a reversible, cell-permeable, non-tubulin interacting inhibitor of the mitotic kinesin Eg5 motor protein which is required for assembling and maintaining the mitotic spindle. Monastrol can also impair centrosome separation and induce monoastral spindles in mammalian somatic cells. The ability of monastrol to alter kinesin Eg5 and centrosome activities and spindle geometry may lead to abnormal chromosome segregation. Mouse oocytes were exposed to 0 (control), 15, 30, and 45 microg/ml monastrol in vitro for 6 h during meiosis I and subsequently cultured for 17 h in monastrol-free media prior to cytogenetic analysis of metaphase II oocytes. A subset of oocytes was cultured for 5 h prior to processing cells for meiotic I spindle analysis. Monastrol retarded oocyte maturation by significantly (P < 0.05) decreasing germinal vesicle breakdown and increasing the frequencies of arrested metaphase I oocytes. Also, significant (P < 0.05) increases in the frequencies of monoastral spindles and chromosome displacement from the metaphase plate were found in oocytes during meiosis I. In metaphase II oocytes, monastrol significantly (P < 0.05) increased the frequencies of premature centromere separation and aneuploidy. These findings suggest that abnormal meiotic spindle geometry predisposes oocytes to aneuploidy.  相似文献   

12.
In normal cells, cyclin D1 is induced by growth factors and promotes progression through the G(1) phase of the cell cycle. Cyclin D1 is also an oncogene that is thought to act primarily by bypassing the requirement for mitogens during the G(1) phase. Studies of clinical tumors have found that cyclin D1 overexpression is associated with chromosome abnormalities, although a causal effect has not been established in experimental systems. In this study, we found that transient expression of cyclin D1 in normal hepatocytes in vivo triggered dysplastic mitoses, accumulation of supernumerary centrosomes, abnormalities of the mitotic spindle, and marked chromosome changes within several days. This was associated with up-regulation of checkpoint genes p53 and p21 as well as hepatocyte apoptosis in the liver. Transient transfection of cyclin D1 also induced centrosome and mitotic spindle abnormalities in breast epithelial cells, suggesting that this may be a generalized effect. These results indicate that cyclin D1 can induce deregulation of the mitotic apparatus and aneuploidy, effects that could contribute to the role of this oncogene in malignancy.  相似文献   

13.
The generation of micronuclei is a reflection of DNA damage, defective mitosis, and loss of genetic material. The involvement of the MAPK pathway in mediating v-ras-induced micronuclei in NIH 3T3 cells was examined by inhibiting MAPK activation. Conversely, the MAPK pathway was constitutively activated by infecting cells with a v-mos retrovirus. Micronucleus formation was inhibited by the MAPK kinase inhibitors PD98059 and U0126, but not by wortmannin, an inhibitor of the Ras/phosphatidylinositol 3-kinase pathway. Transduction of cells with v-mos resulted in an increase in micronucleus formation, also consistent with the involvement of the MAPK pathway. Staining with the anti-centromeric CREST antibody revealed that instability induced by constitutive activation of MAPK is due predominantly to aberrant mitotic segregation, since most of the micronuclei were CREST-positive, reflective of lost chromosomes. A significant fraction of the micronuclei were CREST-negative, reflective of lost acentric chromosome fragments. Some of the instability observed was due to mitotic events, consistent with the increased formation of bi-nucleated cells, which result from perturbations of the mitotic spindle and failure to undergo cytokinesis. This chromosome instability, therefore, is a consequence of mitotic aberrations, mediated by the MAPK pathway, including centrosome amplification and formation of mitotic chromosome bridges.  相似文献   

14.
Chinese hamster ovary (CHO) cells are major host cells for biopharmaceuticals. During culture, the chromosome number of CHO cells alters spontaneously. Here, we investigated the effects of artificial changes in the chromosome number on productivity. When cell fusion between antibody-producing CHO-K1-derived cells was induced, we observed a wide range of aneuploidy that was not detected in controls. In particular, antibody productivities were high in clone-derived cell populations that retained a diverse chromosome number distribution. We also induced aneuploid cells using 3-aminobenzamide that causes chromosome non-disjunction. After induction of aneuploidy by 3-aminobenzamide, cells with an increased chromosome number were isolated, but cells with a decreased chromosome number could not be isolated. When antibody expression vectors were introduced into these isolated clones, productivity tended to increase in cells with an increased chromosome number. Further analysis was carried out by focusing on clone 5E8 with an average chromosome number of 37. When 5E8 cells were used as host, the productivity of multiple antibodies, including difficult-to-express antibodies, was improved compared with CHO-K1 cells. The copies of exogenous genes integrated into the genome were significantly increased in 5E8 cells. These findings expand the possibilities for host cell selection and contribute to the efficient construction of cell lines for recombinant protein production.  相似文献   

15.
Chromosome loss or gain is associated with a large number of solid cancers, providing genomic plasticity and thus adaptability to cancer cells. Numerical centrosome abnormalities arising from centrosome over-duplication or failed cytokinesis are a recognized cause of aneuploidy. In higher eukaryotic cells, the centrosome duplicates only once per cell cycle to ensure the formation of a bipolar mitotic spindle that orchestrates the balanced distribution of the sister chromatids to the respective daughter cells. Here we delineate the events that allow abnormal centrosome duplication, resulting in mitotic errors and incorrect chromosome segregation in cells with sustained cyclin-dependent kinase (CDK) activity. We have identified NPM1 as a substrate for CDK6 activated by the Kaposi's sarcoma herpesvirus (KSHV) D-type cyclin and shown that p53-driven apoptosis occurs downstream of NPM1 phosphorylation as a checkpoint mechanism that prevents accumulation of cells with supernumerary centrosomes. Our findings provide evidence that abnormal chromosome segregation in KSHV-infected cells is a direct consequence of NPM1 phosphorylation and predict that genomic instability is an inevitable consequence of latent KSHV infection.  相似文献   

16.
Aneuploidy is an important contributor to reproductive failure and tumor development. It arises spontaneously or as a result of exposure to aneugenic agents through non-disjunction. Two spindle poisons, colchicine (COL) and vinblastine (VBL) are mutagenic in the mouse lymphoma assay (MLA), a gene mutation assay that targets the heterozygous thymidine kinase (tk) gene on chromosome 11 in mouse lymphoma L5178Y tk+/- 3.7.2c cells. To investigate the mechanisms of spindle poison mutagenesis, we analyzed the COL- and VBL-induced TK mutants at the molecular and cytogenetic level. Loss of heterozygosity (LOH) analysis employing a microsatellite region within the tk locus revealed that almost all mutants had lost the functional tk allele. To determine the extent of the LOH, we further examined LOH mutants for heterozygosity at nine microsatellite loci spanning the entire chromosome 11. Interestingly, every microsatellite marker showed LOH in all COL- and VBL-induced LOH mutants, suggesting that these mutants were generated by loss of the whole chromosome 11 through mitotic non-disjunction. Chromosome painting analysis supported this hypothesis; there were no mutants showing structural changes such as deletions or translocations involving chromosome 11. In contrast, spontaneous TK mutants followed from point mutations, deletions and recombinational events as well as whole chromosome loss. Our present study indicates that spindle poisons induce mutations through mitotic non-disjunction without structural DNA changes and supports a possible mechanism in which a recessive mutation mediated by aneuploidy may develop tumors.  相似文献   

17.
Aurora A kinase plays an essential role in the proper assembly and function of the mitotic spindle, as its perturbation causes defects in centrosome separation, spindle pole organization, and chromosome congression. Moreover, Aurora A disruption leads to cell death via a mechanism that involves aneuploidy generation. However, the link between the immediate functional consequences of Aurora A inhibition and the development of aneuploidy is not clearly defined. In this study, we delineate the sequence of events that lead to aneuploidy following Aurora A inhibition using MLN8054, a selective Aurora A small-molecule inhibitor. Human tumor cells treated with MLN8054 show a high incidence of abnormal mitotic spindles, often with unseparated centrosomes. Although these spindle defects result in mitotic delays, cells ultimately divide at a frequency near that of untreated cells. We show that many of the spindles in the dividing cells are bipolar, although they lack centrosomes at one or more spindle poles. MLN8054-treated cells frequently show alignment defects during metaphase, lagging chromosomes in anaphase, and chromatin bridges during telophase. Consistent with the chromosome segregation defects, cells treated with MLN8054 develop aneuploidy over time. Taken together, these results suggest that Aurora A inhibition kills tumor cells through the development of deleterious aneuploidy.  相似文献   

18.
We report that the presence of an extra Y chromosome can be used as a marker for the induction of aneuploidy (mitotic non-disjunction) in a human lymphoblastoid cell line. This endpoint is easily visualized in metaphase chromosome preparations after staining with quinacrine mustard. The induction of cells with two Y chromosomes by nitrogen mustard (NM) was examined. Exposure to 150 ng/ml nitrogen mustard induced a 6-fold increase in aneuploid frequency relative to untreated control levels; maximal induction of aneuploidy was observed 2 days after treatment. Lower concentrations of nitrogen mustard (36 and 75 ng/ml) induced smaller increases in aneuploid frequency, with maximal induction observed 1 day after treatment. This system has the potential to be used as an assay for the induction of aneuploidy in cultured human cells.  相似文献   

19.
Chromosomal lagging and non-disjunction are the main mechanisms of chromosomal malsegregation at mitosis. To date, the relative importance of these two events in the genesis of spontaneous or induced aneuploidy has not been fully elucidated. A methodology based on in situ hybridization with centromeric probes in binucleated lymphocytes was previously developed to provide some insight into this matter. With this method, both chromosomal loss and non-disjunction can be simultaneously detected by following the distribution of specific chromosomes in the nuclei and micronuclei of binucleated cells. In this study, this approach was used for studying the role of chromosomal loss and non-disjunction in the age-related malsegregation of sex chromosomes in females. For this purpose, cultures of cytokinesis-blocked lymphocytes were established from 12 healthy women ranging in age from 25 to 56. The occurrence of malsegregation of X chromosomes in vitro was estimated in binucleated cells that contained four signals, which orginates from the division of normal disomic cells. In this cell population, the frequencies of X chromosome loss and non-disjunction ranged from 0% to 1.69% (mean 0.75%), and from 0.20% to 1.33% (mean 0.57%), respectively. This indicates that both events contribute to malsegregation of X chromosomes in vitro. Moreover, a small but not negligible fraction of binucleated cells with two or six copies of the X chromosome was noticed in all donors. These cells, which are thought to arise from parental monosomic and trisomic types, may indicate the malsegregation of X chromosomes in vivo. The frequency of X chromosome aneuploidy both in vivo and in vitro significantly correlated with the age of donors. Analysis of chromosomal distribution in unbalanced cells demonstrated that both X homologues were frequently involved. The frequency of such multiple events (0.17%) was far greater than that expected by mere chance, indicating a tendency to multiple malsegregation events in the cell population investigated. Finally, parallel analysis of the segregation of chromosomex X and 1 in five of the donors confirmed the greater (about tenfold) susceptibility of X chromosomes to malsegregate compared with autosomes.  相似文献   

20.
Saccharomyces Sac3 required for actin assembly was shown to be involved in DNA replication. Here, we studied the function of a mammalian homologue SHD1 in cell cycle progression. SHD1 is localized on centrosomes at interphase and at spindle poles and mitotic spindles, similar to alpha-tubulin, at M phase. RNA interference suppression of endogenous shd1 caused defects in centrosome duplication and spindle formation displaying cells with a single apparent centrosome and down-regulated Mad2 expression, generating increased micronuclei. Conversely, increased expression of SHD1 by DNA transfection with shd1-green fluorescent protein (gfp) vector for a fusion protein of SHD1 and GFP caused abnormalities in centrosome duplication displaying cells with multiple centrosomes and deregulated spindle assembly with up-regulated Mad2 expression until anaphase, generating polyploidy cells. These results demonstrated that shd1 is involved in cell cycle progression, in particular centrosome duplication and a spindle assembly checkpoint function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号