首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mitochondria of early Drosophila embryos were observed with a transmission electron microscope and a fluorescent microscope after vital staining with rhodamine 123, which accumulates only in active mitochondria. Rhodamine 123 accumulated particularly in the posterior pole region in early cleavage embryos, whereas the spatial distribution of mitochondria in an embryo was uniform throughout cleavage stages. In late cleavage stages, the dye showed very weak and uniform accumulation in all regions of periplasm. Polar plasm, sequestered in pole cells, restored the ability to accumulate the dye. Therefore, it is concluded that the respiratory activity of mitochondria is higher in the polar plasm than in the other regions of periplasm in early embryos, and this changes during development. The temporal changes in rhodamine 123-staining of polar plasm were not affected by u.v. irradiation at the posterior of early cleavage embryos at a sufficient dosage to prevent pole cell formation. This suggests that the inhibition of pole cell formation by u.v. irradiation is not due to the inactivation of the respiratory activities of mitochondria. In addition, we found that the anterior of Bicaudal-D mutant embryos at cleavage stage was stained with rhodamine 123 with the same intensity as the posterior of wild-type embryos. No pole cells form in the anterior of Bic-D embryos, where no restoration of mitochondrial activity occurs in the blastoderm stage. The posterior group mutations that we tested (staufen, oskar, tudor, nanos) and the terminal mutation (torso) did not alter staining pattern of the posterior with rhodamine 123.  相似文献   

2.
The expression of the Ca2+-dependent epithelial cell adhesion molecule E-cadherin (also known as uvomorulin and L-CAM) in the early stages of embryonic development of Xenopus laevis was examined. E-Cadherin was identified in the Xenopus A6 epithelial cell line by antibody cross-reactivity and several biochemical characteristics. Four independent mAbs were generated against purified Xenopus E-cadherin. All four mAbs recognized the same polypeptides in A6 cells, adult epithelial tissues, and embryos. These mAbs inhibited the formation of cell contacts between A6 cells and stained the basolateral plasma membranes of A6 cells, hepatocytes, and alveolar epithelial cells. The time of E-cadherin expression in early Xenopus embryos was determined by immunoblotting. Unlike its expression in early mouse embryos, E-cadherin was not present in the eggs or early blastula of Xenopus laevis. These findings indicate that a different Ca2+-dependent cell adhesion molecule, perhaps another member of the cadherin gene family, is responsible for the Ca2+-dependent adhesion between cleavage stage Xenopus blastomeres. Detectable accumulation of E-cadherin started just before gastrulation at stage 9 1/2 and increased rapidly up to the end of gastrulation at stage 15. In stage 15 embryos, specific immunofluorescence staining of E-cadherin was discernible only in ectoderm, but not in mesoderm and endoderm. The ectoderm at this stage consists of two cell layers. The outer cell layer of ectoderm was stained intensely, and staining was localized to the basolateral plasma membrane of these cells. Lower levels of staining were observed in the inner cell layer of ectoderm. The coincidence of E-cadherin expression with the process of gastrulation and its restriction to the ectoderm indicate that it may play a role in the morphogenetic movements of gastrulation and resulting segregation of embryonic germ layers.  相似文献   

3.
During embryogenesis, cell division must be spatially and temporally regulated with respect to other developmental processes. Leech embryos undergo a series of unequal and asynchronous cleavages to produce individually recognizable cells whose lineages, developmental fates and cell cycle properties have been characterized. Thus, leech embryos provide an opportunity to examine the regulation of cell division at the level of individual well-characterized cells within a community of different types of cells. Isolation of leech homologues of some of the highly conserved regulators of the cell division cycle, and characterization of their patterns of maternal and zygotic expression, indicate that the cell divisions of early leech embryos are regulated by cell type-specific mechanisms. These studies with leech embryos contribute to the emerging appreciation of the diverse mechanisms by which animals regulate cell division during early development.  相似文献   

4.
Summary A polyclonal antibody (SP-2) has been produced, which recognizes antigens expressed in epidermal cells of Pleurodeles waltlii embryos. The antigens appear first at the end of gastrulation in the external surface of the embryo and are selectively expressed in ectodermally derived epidermal structures. Ectodermal commitment was investigated using cell cultures and blastocoel graft experiments. The four animal blastomeres of the 8-cell stage as well as the animal cap explants of the early gastrula stage cultured in vitro differentiate into epidermis, and SP-2 antigens are expressed. The expression of SP-2-defined antigens is inhibited both in vivo and in vitro by the inductive interaction of chordomesoderm. Once dissociated, ectodermal cells do not react with SP-2. Conversely, the aggregation of ectodermal cells may restore the expression of SP-2 antigens. Transplantation of animal cap explants or isolated ectodermal cells into the blastocoel of a host embryo at the early gastrula stage shows that only cells integrated into the epidermis express the marker antigens. When vegetal cells were dissociated from donor embryos before the mid-blastula stage and implanted into the blastocoel of host embryos at the early gastrula stage, their progeny were found in all germ layers, cells that were found in the host epidermis were stained with SP-2, whereas those contributing to mesoderm and endoderm were not. Thus the acquisition of cell polarity in epidermal differentiation and the organization of cells into epithelial structures are essential for SP-2-defined antigen expression.  相似文献   

5.
When sea urchin embryos were subjected to nucleolar organizer region (NOR)-silver staining, densely stained particles were observed in the cytoplasm. The appearance of these cytoplasmic particles (CPs) was cell-cycle dependent. During early development, the CPs were detected at interphase, but not during mitosis; they disappeared at metaphase and reappeared at telophase. The CPs appeared periodically even when embryos were treated with cytochalasin B or aphidicolin, which inhibits the progression of cytokinesis and nuclear division, respectively. By contrast, CPs were not detected in the colchicine-treated embryos in which both cytokinesis and nuclear divisions were prevented. The CPs were observed only in the embryos whose stage was early blastula (about 6th to 7th cleavage) or earlier; no CPs were detected even at interphase in the embryos at late blastula (about 8th to 9th cleavage) or later. Electron microscopic evaluation showed CPs to be granular structures, similar to heavy bodies. Also, sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) showed that 95-kDa and 38-kDa proteins were the NOR-silver-staining proteins in sea urchin embryos. These proteins existed during the course of the cell cycles. These results suggest that (1) the cyclic appearance of the CPs or heavy bodies is closely related to the cell cycle as well as the programming of the embryogenesis, but independent of the cycle of cytokinesis and nuclear division; (2) 95-kDa and 38-kDa proteins are the major NOR-silver-staining proteins in sea urchin embryos.  相似文献   

6.
7.
This study was undertaken to localize epidermal growth factor receptor (EGFR) during early development of Japanese medaka embryos using immunocytochemistry. Specific staining was observed in all stages studied. All of the cells of the embryonic disc from the germinal disc (1 cell) through the late high blastula stages stained moderately for EGFR. Beginning with the flat blastula stage, the surface and lateral cells of the embryonic disc and the cells migrating around the yolk stained intensely for EGFR, and this continued throughout the study period. The presence of the keel at the late gastrula stage did not affect the moderate staining of the majority of the embryonic disc cells. When somites first appeared, the keel region stained less intensely than before, but scattered individual cells stained intensely for EGFR. Embryos with 12 somites had a neural tube that was lightly stained except for a few intensely stained individual cells. The neural tube, notochord and somites in 24-somite embryos lacked immunostaining. However, the surface epithelium, aorta, intestinal epithelium and pronephric duct demonstrated EGFR immunostaining. This study demonstrates that EGFR is present during medaka development and supports the hypothesis that EGFR ligands are important during cleavage, gastrulation and early organogenesis.  相似文献   

8.
An attempt has been made to improve the early post-implantation development potential of diploid parthenogenetic mouse embryos by transferring parthenogenetic blastocysts to one uterine horn of a pseudopregnant recipient and a similar number of fertilized embryos to the contralateral horn. In control studies, diploid parthenogenetic embryos were transferred to both uterine horns of appropriate recipients. Unfortunately no obvious advantage appeared to be gained by carrying out the former manoeuvre. A significant improvement in the development potential of the parthenogenones could have indicated that their poor post-implantation survival might have been associated with a deficiency, possibly of hormonal origin, in the functioning of their decidual reaction. However, sufficient somite-containing parthenogenetic embryos were obtained in this study to allow a comparison to be made between them and fertilized embryos that were morphologically at a comparable stage of development. The parthenogenones were found to have a markedly smaller crown-rump length than their fertilized counterparts. A high proportion of both the parthenogenetic and fertilized embryos were subsequently fixed and appropriately stained in order to localize alkaline phosphatase activity. The analysis of this material clearly demonstrated that parthenogenetic mouse embryos are in fact capable of producing primordial germ cells. The latter were recognized by their morphology, histochemical staining appearance, and characteristic location, being found in the early 'turned' embryos within the dorsal mesentery in close proximity to the developing gut tube, and in the more advanced limb-bud stage embryos within the gonadal ridges.  相似文献   

9.
10.
The mammalian blastocyst consists of an inner cell mass (ICM) enclosed by the trophectoderm. The origin of these two cell populations lies in the segregation of inner and outer cells in the early morula. In the present study, the segregation of inner and outer cells has been studied in porcine embryos and is compared with segregation in mouse embryos. For this, nuclei of inner and outer cells were differentially labelled with two fluorochromes after partial complement-mediated lysis of the outer cells. In porcine and mouse embryos compaction and the first appearance of inner cells occur at different stages of development. In porcine embryos compaction was observed as early as the 4-cell stage, while in mouse embryos compaction occurred in the 8-cell stage. The first inner cells segregated in porcine embryos which were in the transition from four to eight cells and inner cells were added during two subsequent cell cycles. In mouse embryos inner cells segregated predominantly during the fourth cleavage division. From the results obtained we conclude that the segregation of inner and outer cells follows a different pattern in mouse and in porcine embryos.  相似文献   

11.
12.
An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.  相似文献   

13.
Determinative properties of muscle lineages in ascidian embryos   总被引:5,自引:0,他引:5  
Blastomeres removed from early cleavage stage ascidian embryos and reared to 'maturity' as partial embryos often elaborate tissue-specific features typical of their constituent cell lineages. We used this property to study recent corrections of the ascidian larval muscle lineage and to compare the ways in which different lineages give rise to muscle. Our evaluation of muscle differentiation was based on histochemical localization and quantitative radiometric measurement of a muscle-specific acetylcholinesterase activity, and the development of myofilaments and myofibrils as observed by electron microscopy. Although the posterior-vegetal blastomeres (B4.1 pair) of the 8-cell embryo have long been believed to be the sole precursors of larval muscle, recent studies using horseradish peroxidase to mark cell lineages have shown that small numbers of muscle cells originate from the anterior-vegetal (A4.1) and posterior-animal (b4.2) blastomeres of this stage. Fully differentiated muscle expression in isolated partial embryos of A4.1-derived cells requires an association with cells from other lineages whereas muscle from B4.1 blastomeres develops autonomously. Clear differences also occurred in the time acetylcholinesterase activity was first detected in partial embryos from these two sources. Isolated b4.2 cells failed to show any muscle development even in combination with anterior-animal cells (a4.2) and are presumably even more dependent on normal cell interactions and associations. Others have noted an additional distinction between the different sources of muscle: muscle cells from non-B4.1 lineages occur exclusively in the distal part of the tail, while the B4.1 descendants contribute those cells in the proximal and middle regions. During the course of ascidian larval evolution tail muscle probably had two origins: the primary lineage (B4.1) whose fate was set rigidly at early cleavage stages and secondarily evolved lineages which arose later by recruitment of cells from other tissues resulting in increased tail length. In contrast to the B4.1 lineage, muscle development in the secondary lineages is controlled less rigidly by processes that depend on cell interactions.  相似文献   

14.
15.
Mouse two-celled embryos and blastulae were Feulgen stained and the DNA content of their nuclei was measured with an integrating microdensitometer. The cells considered on the basis of their nuclear DNA content to be in G1, S, and G2 phases of the cell cycle were selected and their total chromatin area and chromatin areas at different gray levels were measured by the image analyzing computer, Quantimet. The measurements were aimed at quantitation of several features of the chromatin morphology of cells in different functional states. The total area of chromatin was found to increase, and the mean density of chromatin to decrease, from the G1 to the G2 phase of the cell cycle in both two-celled embryos and blastulae. The area of chromatin decreased, and the mean density of chromatin increased, as embryos developed from two-celled to blastula stage. It was concluded that nuclear morphology in preimplantation mouse embryos depends on both the phase of the cell cycle and the stage of development. The method of image analysis described was found to be useful for quantitation of changes in chromatin morphology.  相似文献   

16.
J. Jasik  T. Salajova  J. Salaj 《Protoplasma》1995,185(3-4):205-211
Summary Embryogenic callus cultures of European black pine (Pinus nigra Arn.) were established on megagametophytes containing zygotic embryos in early developmental stage. In addition to many elongated cells and disorganized growing clumps they contained early somatic embryos at various stages of development. At all stages of embryogenesis the embryos were organized as bipolar structures. Cell pairs composed of one isodiametric cell with dense cytoplasm and a second large vacuolated cell were the simplest bipolar system. The vacuolated cell underwent senescence. The cytoplasm-rich cell and its derivates divided transversally, resulting in several cytoplasmic cells arranged in row. An early embryonal cylindrical mass was formed by longitudinal division of the cells in a filament. Proximally localized cells in the early embryonal mass became vacuolized and elongated gradually giving rise to the secondary suspensor. Distal cells remained cytoplasmic in character and formed an embryonal mass along the axis of long early somatic embryos. Differences in the proportion of organelles and heterochromatin clumps, thickness of cell walls and number of plasmodesmata between cells at various stages of early somatic embryogenesis were described.  相似文献   

17.
Cloning technology would allow targeted genetic alterations in the rat, a species which is yet unaccessible for such studies due to the lack of germline-competent embryonic stem cells. The present study was performed to examine the developmental ability of reconstructed rat embryos after transfer of nuclei from early preimplantation stages. We observed that single blastomeres from two-cell embryos and zygotes reconstructed by pronuclei exchange can develop in vitro until morula/blastocyst stage. When karyoplasts from blastomeres were used for the reconstruction of embryos, highest in vitro cleavage rates were obtained with nuclei in an early phase of the cell cycle transferred into enucleated preactivated oocytes or zygotes. However, further in vitro development of reconstructed embryos produced from blastomere nuclei was arrested at early cleavage stages under all conditions tested in this study. In contrast, immediate transfer to foster mothers of reconstructed embryos with nuclei from two-cell embryos at an early stage of the cell cycle in preactivated enucleated oocytes resulted in live newborn rats, with a general efficiency of 0.4%-2.2%. The genetic origin of the cloned offspring was verified by using donor nuclei from embryos of Black Hooded Wistar rats and transgenic rats carrying an ubiquitously expressed green fluorescent protein transgene. Thus, we report for the first time the production of live cloned rats using nuclei from two-cell embryos.  相似文献   

18.
In the Drosophila embryo, determination is established at the cellular blastoderm and a mosaic type development is observed after this time. Before the blastoderm stage, however, development is not of the mosaic type, as ligation during the nuclear multiplication stage causes a change in the spatial organization of the larval pattern. An aberration in determination leads to an increase in segment size, an increase in the number of cells per segment, and a decrease in segment number. This abnormal determination of blastoderm cells has also been demonstrated experimentally by marking corresponding regions of the blastoderm in ligated (posterior fragments only) and nonligated embryos. When the blastoderms of nonligated and ligated embryos are punctured at the same site, ligated embryos produce larvae with damage in segments posterior to the segments damaged in larvae from nonligated embryos. Ultrastructurally, no abnormalities were observed in the plasma membrane at the time of ligation or later in blastoderm cells which formed in the ligation area of these embryos. Evidence from this study, as well as other sources, indicates that determination of segmentation is under maternal control.  相似文献   

19.
Presence of cell surface galactosyltransferase was surveyed in preimplantation mouse embryos by indirect immunofluorescence staining using an affinity-purified antibody against galactosyltransferase from human milk. Distinct fluorescence staining was observed in embryos ranging from late 8-cell stage to early blastocysts, while the embryos at other stages were stained only weakly. The cell surface enzyme was also present in F9 embryonal carcinoma cells, in a fraction of bone marrow cells of the mouse, and in a few percent of testicular sperm.  相似文献   

20.
Urakawa M  Ideta A  Sawada T  Aoyagi Y 《Theriogenology》2004,62(3-4):714-728
Somatic cell nuclear transfer has a low success rate, due to a high incidence of fetal loss and increased perinatal morbidity/mortality. One factor that may affect the successful development of nuclear transfer embryos is the cell cycle stage of the donor cell. In order to establish a cell cycle synchronization method that can consistently produce cloned embryos and offspring, we examined the effects of different combinations of three cell treatments on the recovery rate of mitotic phase cells using bovine fetal fibroblasts. In the first experiment, we examined the recovery rate of mitotic phase cells by a combination of treatment with a metaphase arrestant (1 microM 2-methoxyestradiol), shaking the plate and selecting cells with a diameter of 20 microns. As a result, 99% of mitotic phase cells were recovered by repeating the combined treatment of metaphase arrestant and shaking, and collection of cells with a specific diameter. In the second experiment, nuclear transfer was carried out using early G1 phase cells by choosing pairs of bridged cells derived from mitotic phase cells recovered by the combined treatment of 1 microM 2-methoxyestradiol and shaking, and collection of cells with a diameter of 20 microns. The reconstructed embryos were transferred to recipient heifers to determine post-implantation development. Development of embryos reconstructed from early G1 phase cells from the >/=6 cells stage on Day 3 to the morula-blastocyst stage on Day 6 was 100%. Ten blastocysts constructed from two cell lines were transferred into 10 recipient heifers. Nine of the 10 recipients delivered single live calves. In conclusion, mitotic phase bovine fibroblast cells were easily recovered by the combined treatments of 1 microM 2-methoxyestradiol, shaking, and selecting cells of the appropriate diameter. Furthermore, nuclear transfer using cells in the early G1 phase as donor cells gave a high rate of offspring production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号