首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibrils are fibrillar deposits of denatured proteins associated with amyloidosis and are formed by a nucleation and growth mechanism. We revisited an alternative and classical view of amyloid fibrillation: amyloid fibrils are crystal‐like precipitates of denatured proteins formed above solubility upon breaking supersaturation. Various additives accelerate and then inhibit amyloid fibrillation in a concentration‐dependent manner, suggesting that the combined effects of stabilizing and destabilizing forces affect fibrillation. Heparin, a glycosaminoglycan and anticoagulant, is an accelerator of fibrillation for various amyloidogenic proteins. By using β2‐microglobulin, a protein responsible for dialysis‐related amyloidosis, we herein examined the effects of various concentrations of heparin on fibrillation at pH 2. In contrast to previous studies that focused on accelerating effects, higher concentrations of heparin inhibited fibrillation, and this was accompanied by amorphous aggregation. The two‐step effects of acceleration and inhibition were similar to those observed for various salts. The results indicate that the anion effects caused by sulfate groups are one of the dominant factors influencing heparin‐dependent fibrillation, although the exact structures of fibrils and amorphous aggregates might differ between those formed by simple salts and matrix‐forming heparin. We propose that a conformational phase diagram, accommodating crystal‐like amyloid fibrils and glass‐like amorphous aggregates, is important for understanding the effects of various additives.  相似文献   

2.
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.  相似文献   

3.
Light-chain amyloidosis (AL) is characterized by immunoglobulin light-chain fragments aggregating into amyloid fibrils that deposit extracellularly in vital organs such as the kidney, the heart, and the liver, resulting in tissue degeneration and organ failure, leading to death. Cardiac involvement is found in 50% of AL patients and presents the most severe cases with a life expectancy of less than a year after diagnosis. In this study, we have characterized the variable domain of a cardiac AL patient light chain called AL-09. AL-09 folds as a beta-sheet and is capable of forming amyloid fibrils both in the presence of sodium sulfate and in self-seeded reactions under physiological conditions. Glycosaminoglycans such as dermatan sulfate and heparin promote amyloid formation of self-seeded AL-09 reactions, while the glycosaminoglycan chondroitin sulfate A stabilized oligomeric intermediates and did not elongate the preformed fibrils (nucleus) present in the reaction. Finally, the histological dye Congo red, known to bind to the cross beta-sheet structure of amyloid fibrils, inhibits AL-09 amyloid fibril formation in the presence of sodium sulfate and in self-seeded reactions. This paper provides insight into the impact of different reagents on light-chain stability, structure, amyloid fibril formation, and inhibition.  相似文献   

4.
Highly stable enzyme coaggregates were developed using amyloid fibrils as support materials. Amyloid fibril formation was induced by ionic liquids, and immobilization was done by the coaggregation of enzymes and amyloid fibrils followed by chemical cross-linking. Transmission and scanning electron microscopy studies were carried out to characterize the coaggregates. The amyloid fibril-linked enzymes showed significantly increased stability against various deactivating conditions. In addition, a high level of reusability was clearly observed. This study clearly demonstrated that amyloid fibrils can be used as biomaterials for enzyme immobilization and that amyloid fibril-linked enzyme coaggregates have good potential for industrial applications.  相似文献   

5.
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.  相似文献   

6.
Recent progress in the field of amyloid research indicates that the classical view of amyloid fibrils, being irreversibly formed highly stable structures resistant to perturbating conditions and proteolytic digestion, is getting more complex. We studied the thermal stability and heat-induced depolymerization of amyloid fibrils of β(2)-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis. We found that freshly polymerized β2m fibrils at 0.1-0.3 mg/mL concentration completely dissociated to monomers upon 10 min incubation at 99 °C. Fibril depolymerization was followed by thioflavin-T fluorescence and circular dichroism spectroscopy at various temperatures. Dissociation of β2m fibrils was found to be a reversible and dynamic process reaching equilibrium between fibrils and monomers within minutes. Repolymerization experiments revealed that the number of extendable fibril ends increased significantly upon incubation at elevated temperatures suggesting that the mechanism of fibril unfolding involves two distinct processes: (1) dissociation of monomers from the fibril ends and (2) the breakage of fibrils. The breakage of fibrils may be an important in vivo factor multiplying the number of fibril nuclei and thus affecting the onset and progress of disease. We investigated the effects of some additives and different factors on the stability of amyloid fibrils. Sample aging increased the thermal stability of β2m fibril solution. 0.5 mM SDS completely prevented β2m fibrils from dissociation up to the applied highest temperature of 99 °C. The generality of our findings was proved on fibrils of K3 peptide and α-synuclein. Our simple method may also be beneficial for screening and developing amyloid-active compounds for therapeutic purposes.  相似文献   

7.
Thioflavin T is a benzothiazole dye that exhibits enhanced fluorescence upon binding to amyloid fibrils and is commonly used to diagnose amyloid fibrils, both ex vivo and in vitro. In aqueous solutions, thioflavin T was found to exist as micelles at concentrations commonly used to monitor fibrils by fluorescence assay ( approximately 10-20 microM). Specific conductivity changes were measured at varying concentration of thioflavin T and the critical micellar concentration was calculated to be 4.0+/-0.5 microM. Interestingly, changes in the fluorescence excitation and emission of thioflavin T were also dependent on the micelle formation. The thioflavin T micelles of 3 nm diameter were directly visualized using atomic force microscopy, and bound thioflavin T micelles were observed along the fibril length for representative fibrils. Increasing concentration of thioflavin T above the critical micellar concentration shows increased numbers of micelles bound along the length of the amyloid fibrils. Thioflavin T micelles were disrupted at low pH as observed by atomic force microscopy and fluorescence enhancement upon binding of thioflavin T to amyloid fibrils also reduced by several-fold upon decreasing the pH to below 3. This suggests that positive charge on the thioflavin T molecule has a role in its micelle formation that then bind the amyloid fibrils. Our data suggests that the micelles of thioflavin T bind amyloid fibrils leading to enhancement of fluorescence emission.  相似文献   

8.
For nearly four decades, the formation of amyloid fibrils by the inflammation-related protein serum amyloid A (SAA) has been pathologically linked to the disease amyloid A (AA) amyloidosis. However, here we show that the nonpathogenic murine SAA2.2 spontaneously forms marginally stable amyloid fibrils at 37 °C that exhibit cross-beta structure, binding to thioflavin T, and fibrillation by a nucleation-dependent seeding mechanism. In contrast to the high stability of most known amyloid fibrils to thermal and chemical denaturation, experiments monitored by glutaraldehyde cross-linking/SDS-PAGE, thioflavin T fluorescence, and light scattering (OD(600)) showed that the mature amyloid fibrils of SAA2.2 dissociate upon incubation in >1.0 M urea or >45 °C. When considering the nonpathogenic nature of SAA2.2 and its ~1000-fold increased concentration in plasma during an inflammatory response, its extreme in vitro amyloidogenicity under physiological-like conditions suggest that SAA amyloid might play a functional role during inflammation. Of general significance, the combination of methods used here is convenient for exploring the stability of amyloid fibrils that are sensitive to urea and temperature. Furthermore, our studies imply that analogous to globular proteins, which can possess structures ranging from intrinsically disordered to extremely stable, amyloid fibrils formed in vivo might have a broader range of stabilities than previously appreciated with profound functional and pathological implications.  相似文献   

9.
Dialysis-related amyloidosis is a major complication in long-term hemodialysis patients. In dialysis-related amyloidosis, β2-microglobulin (β2-m) amyloid fibrils deposit in the osteoarticular tissue, leading to carpal tunnel syndrome and destructive arthropathy with cystic bone lesions, but the mechanism by which these amyloid fibrils destruct bone and joint tissue is not fully understood. In this study, we assessed the cytotoxic effect of β2-m amyloid fibrils on the cultured rabbit synovial fibroblasts. Under light microscopy, the cells treated with amyloid fibrils exhibited both necrotic and apoptotic changes, while the cells treated with β2-m monomers and vehicle buffer exhibited no morphological changes. As compared to β2-m monomers and vehicle buffer, β2-m amyloid fibrils significantly reduced cellular viability as measured by the lactate dehydrogenase release assay and the 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay and significantly increased the percentage of apoptotic cells as measured by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. β2-m amyloid fibrils added to the medium adhered to cell surfaces, but did not disrupt artificial plasma membranes as measured by the liposome dye release assay. Interestingly, when the cells were incubated with amyloid fibrils for several hours, many endosomes/lysosomes filled with amyloid fibrils were observed under confocal laser microscopy and electron microscopy, Moreover, some endosomal/lysosomal membranes were disrupted by intravesicular fibrils, leading to the leakage of the fibrils into the cytosol and adjacent to mitochondria. Inhibition of actin-dependent endocytosis by cytochalasin D attenuated the toxicity of amyloid fibrils. These results suggest that endocytosed β2-m amyloid fibrils induce necrosis and apoptosis by disrupting endosomal/lysosomal membranes, and this novel mechanism on the cytotoxicity of amyloid fibrils is described.  相似文献   

10.
Mutations in keratoepithelin are associated with blinding ocular diseases, including lattice corneal dystrophy type 1 and granular corneal dystrophy type 2. These diseases are characterized by deposits of amyloid fibrils and/or granular non-amyloid aggregates in the cornea. Removing the deposits in the cornea is important for treatment. Previously, we reported the destruction of amyloid fibrils of β(2)-microglobulin K3 fragments and amyloid β by laser irradiation coupled with the binding of an amyloid-specific thioflavin T. Here, we studied the effects of this combination on the amyloid fibrils of two 22-residue fragments of keratoepithelin. The direct observation of individual amyloid fibrils was performed in real time using total internal reflection fluorescence microscopy. Both types of amyloid fibrils were broken up by the laser irradiation, dependent on the laser power. The results suggest the laser-induced destruction of amyloid fibrils to be a useful strategy for the treatment of these corneal dystrophies.  相似文献   

11.
Prion proteins (PrP) can aggregate into toxic and possibly infectious amyloid fibrils. This particular macrostructure confers on them an extreme and still unexplained stability. To provide mechanistic insights into this self-assembly process, we used high pressure as a thermodynamic tool for perturbing the structure of mature amyloid fibrils that were prepared from recombinant full-length mouse PrP. Application of high pressure led to irreversible loss of several specific amyloid features, such as thioflavin T and 8-anilino-1-naphthalene sulfonate binding, alteration of the characteristic proteinase K digestion pattern, and a significant decrease in the β-sheet structure and cytotoxicity of amyloid fibrils. Partial disaggregation of the mature fibrils into monomeric soluble PrP was observed. The remaining amyloid fibrils underwent a change in secondary structure that led to morphologically different fibrils composed of a reduced number of proto-filaments. The kinetics of these reactions was studied by recording the pressure-induced dissociation of thioflavin T from the amyloid fibrils. Analysis of the pressure and temperature dependence of the relaxation rates revealed partly unstructured and hydrated kinetic transition states and highlighted the importance of collapsing and hydrating inter- and intramolecular cavities to overcome the high free energy barrier that stabilizes amyloid fibrils.  相似文献   

12.
Although the stability of globular proteins has been studied extensively, that of amyloid fibrils is scarcely characterized. Beta2-microglobulin (beta2-m) is a major component of the amyloid fibrils observed in patients with dialysis-related amyloidosis. We studied the effects of guanidine hydrochloride on the amyloid fibrils of beta2-m, revealing a cooperative unfolding transition similar to that of the native state. The stability of amyloid fibrils increased on the addition of ammonium sulfate, consistent with a role of hydrophobic interactions. The results indicate that the analysis of unfolding transition is useful to obtain insight into the structural stability of amyloid fibrils.  相似文献   

13.
Human stefin B (cystatin B) is an intracellular cysteine proteinase inhibitor broadly distributed in different tissues. Here, we show that recombinant human stefin B readily forms amyloid fibrils in vitro. It dimerises and further oligomerises, starting from the native-like acid intermediate, I(N), populated at pH 5. On standing at room temperature it produces regular (over 4 microm long) fibrils over a period of several months. These have been visualised by transmission electron microscopy and atomic force microscopy. Their cross-sectional diameter is about 14 nm and blocks of 27 nm repeat longitudinally. The fibrils are smooth, of unbranched surface, consistent with findings of other amyloid fibrils. Thioflavin T fluorescence spectra as a function of time were recorded and Congo red dye binding to the fibrils was demonstrated. Adding 10% (v/v) trifluoroethanol resulted in an increased rate of fibrillation with a typical lag phase. The finding that human stefin B, in contrast to the homologue stefin A, forms amyloid fibrils rather easily should promote further studies of the protein's behaviour in vivo, and/or as a model system for fibrillogenesis.  相似文献   

14.
We used a fluorometric method to examine amyloid fibrils, in vitro. These fibrils in the case of both murine senile and secondary amyloidosis were purified to apparent homogeneity from the water-suspended fraction of the liver of senescence-accelerated mouse, using sucrose density ultracentrifugation, and then the following assays were performed. In the absence of amyloid fibrils, thioflavine T fluoresced faintly at the excitation and emission maxima of 350 and 438 nm, respectively. In the presence of amyloid fibrils, thioflavine T fluoresced brightly at the excitation and emission maxima of 450 and 482 nm, respectively, and the fluorescence change was linear from 0 to 2.0 micrograms/ml amyloid fibrils. This fluorescence was maximal around pH 9.0. Fluorescence intensity in the presence of a constant amount of amyloid fibrils reached a plateau with increase in the thioflavine T concentration. Normal high density lipoproteins which contain apo A-II, the precursor of amyloid fibrils in murine senile amyloidosis, and acute phase high density lipoproteins which contain serum amyloid protein A, the precursor of amyloid fibrils in secondary amyloidosis, showed little fluorescence. The fluorescence was considerably diminished when structure of the amyloid fibrils was disrupted by guanidine-HCl treatment. This method will be useful for the determination of amyloid fibrils in vitro.  相似文献   

15.
Masaki Wakabayashi 《FEBS letters》2009,583(17):2854-36097
Human islet amyloid polypeptide (hIAPP) is the primary component of the amyloid deposits found in the pancreatic islets of patients with type 2 diabetes mellitus. However, it is unknown how amyloid fibrils are formed in vivo. In this study, we demonstrate that gangliosides play an essential role in the formation of amyloid deposits by hIAPP on plasma membranes. Amyloid fibrils accumulated in ganglioside- and cholesterol-rich microscopic domains (‘lipid rafts’). The depletion of gangliosides or cholesterol significantly reduced the amount of amyloid deposited. These results clearly showed that the formation of amyloid fibrils was mediated by gangliosides in lipid rafts.  相似文献   

16.
Beta2-microglobulin (beta2-m), a major component of dialysis-related amyloid fibrils, has an intrachain disulfide bond buried inside the native structure. We examined the conformation of beta2-m amyloid fibrils by analyzing the reactivity of the disulfide bond to a reducing reagent, dithiothreitol. Although the disulfide bond in the native structure was highly protected from reduction, the disulfide bonds in the amyloid fibrils prepared at pH 2.5 were progressively reduced at pH 8.5 by 50 mm dithiothreitol. Because beta2-m amyloid fibrils prepared under acidic conditions have been known to depolymerize at a neutral pH, we examined the relation between depolymerization and reduction of the disulfide bond. The results indicate that the disulfide bonds in the amyloid fibrils were protected from reduction, and the reduction occurred during depolymerization. On the other hand, the disulfide bonds of immature filaments, the thin and flexible filaments prepared under conditions of high salt at pH 2.5, were reduced at pH 8.5 more readily than those of amyloid fibrils, suggesting that the disulfide bonds are exposed to the solvent. Taken together, the disulfide bond once exposed to the solvent upon acid denaturation may be progressively buried in the interior of the amyloid fibrils during its formation.  相似文献   

17.
Amyloid fibrils have potential as bionanomaterials. A bottleneck in their commercial use is the cost of the highly purified protein typically needed as a starting material. Thus, an understanding of the role of heterogeneity in the mixtures from which amyloid fibrils are formed may inform production of these structures from readily available impure starting materials. Insulin, a very well understood amyloid-forming protein, was modified by various reagents to explore whether amyloid fibrils could still form from a heterogeneous mixture of insulin derivatives. Aggregates were characterized by thioflavin T fluorescence and transmission electron microscopy. Using acetylation, reduction carboxymethylation, reduction pyridylethylation, trypsin digestion and chymotrypsin digestion, it was shown that amyloid fibrils can form from heterogeneous mixtures of modified insulin. The modifications changed both the rate of reaction and the yield of the final product, but led to fibrillar structures, some with interesting morphologies. Well defined, long, unbranched fibrils were observed in the crude reduced carboxymethylated insulin mixture and the crude reduced pyridylethylated insulin revealed the formation of "wavy" fibrils, compared with the straighter native insulin amyloid fibrils. Although trypsin digestion inhibited fibrils formation, chymotrypsin digestion of insulin produced a mixture of long and short fibrils under the same conditions. We conclude that amyloid fibrils may be successfully formed from heterogeneous mixtures and, further, that chemical modification may provide a simple means of manipulating protein fibril assembly for use in bionanotechnological applications, enabling some design of overall morphology in the bottom-up assembly of higher order protein structures from amyloid fibrils.  相似文献   

18.
Increasing numbers of proteins have been found to aggregate into insoluble fibers, collectively referred to as amyloid fibrils. To address the conformational stability of amyloid fibrils, we studied the effects of dimethylsulfoxide (DMSO), 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on beta(2)-microglobulin amyloid fibrils by circular dichroism, thioflavin T fluorescence, light scattering, and electron microscopy. When measured by circular dichroism and thioflavin T fluorescence, HFIP, and TFE dissolved the fibrils, producing predominantly helical conformations. However, these alcohols did not dissolve the amyloid fibrils completely as monitored by light scattering and electron microscopy. On the other hand, DMSO completely dissolved the amyloid fibrils although a high concentration [i.e., 80% (v/v)] was required. These results are consistent with the important role of hydrogen bonds in stabilizing amyloid fibrils.  相似文献   

19.
Nilsson MR  Dobson CM 《Biochemistry》2003,42(2):375-382
Lactoferrin has previously been identified in amyloid deposits in the cornea, seminal vesicles, and brain. We report in this paper a highly amyloidogenic region of lactoferrin (sequence of NAGDVAFV). This region was initially identified by sequence comparison with medin, a 5.5 kDa amyloidogenic fragment derived from lactadherin. Subsequent characterization revealed that this peptide forms amyloid fibrils at pH 7.4 when incubated at 37 degrees C. Furthermore, although full-length lactoferrin does not by itself form amyloid fibrils, the protein does bind to the peptide fibrils as revealed by an increase in thioflavin T fluorescence and the presence of enlarged fibrils by transmission electron microscopy and polarized light microscopy. The binding of lactoferrin is a selective interaction with the NAGDVAFV fibrils. Lactoferrin does not bind to insulin or lysozyme fibrils, and the NAGDVAFV fibrils do not bind to soluble insulin or lysozyme. The lactoferrin appears to coat the peptide fibril surface to form mixed peptide/protein fibrils, but again there is no evidence for the formation of lactoferrin-only fibrils. This interaction, therefore, seems to involve selective binding rather than conventional seeding of fibril formation. We suggest that such a process could be generally important in the formation of amyloid fibrils in vivo since the identification of both full-length protein and protein fragments is common in ex vivo amyloid deposits.  相似文献   

20.
Serum amyloid P (SAP) is a common component of human amyloid deposits and has been identified in atherosclerotic lesions. We investigated the extent of the colocalization of SAP with apolipoprotein A-I (apoA-I), apoB, apoC-II, and apoE in human coronary arteries and explored potential roles for SAP in these regions, specifically the effect of SAP on the rate of formation and macrophage recognition of amyloid fibrils composed of apoC-II. Analysis of 42 human arterial sections by immunohistochemistry and double label fluorescence microscopy demonstrated that SAP and apoA-I, apoB, apoC-II, and apoE were increased significantly in atherosclerotic lesions compared with nonatherosclerotic segments. SAP colocalized with all four apolipoproteins to a similar extent, whereas plaque macrophages were found to correlate most strongly with apoC-II and apoB. In vitro studies showed that SAP accelerated the formation of amyloid fibrils by purified apoC-II. Furthermore, SAP strongly inhibited the phagocytosis of apoC-II amyloid fibrils by primary macrophages and macrophage cell lines and blocked the resultant production of reactive oxygen species. The ability of SAP to accelerate apoC-II amyloid fibril formation and inhibit macrophage recognition of apoC-II fibrils suggests that SAP may modulate the inflammatory response to amyloid fibrils in atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号