首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

2.
Abstract: Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma × glioma hybrid cell line (NG108-15 cells). The addition of ≥1 μM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations ≥500 μM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis off [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP-γS, 2-methylthio ATP, β,γ-imidoATP or 3′-O-(4-benzoyl)benzoylATP, but not CTP, AMP, β,γ-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]Pi or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.  相似文献   

3.
Summary 1. Real-time monitoring of dopamine (DA) release from rat striatal slices demonstrated that endothelin (ET)-3 (0.1–10M) produced a biphasic DA release consisting of transient and sustained components. When extracellular Ca2+ was removed, the sustained but not transient response remarkably decreased.2. ET-3 (1–10M) stimulated an increase in the intracellular Ca2+ concentration ([Ca2+]i), which also consisted of two components. The external Ca2+ depletion inhibited primarily the sustained component of the Ca2+ response to ET-3.3. ET-3 increased inositol 1,4,5-trisphosphate (IP3) concentrations in striatal slices. This response peaked at 10 to 20 sec and returned to the basal level 2 min after stimulation, an event which was in good accord with a prompt and transient phase of both cytosolic Ca2+ activity and DA release evoked by ET-3.4. Thus, ET-3 produces a transient and a sustained release of DA from striatal slices by stimulating intracellular Ca2+ mobilization via IP3 formation and extracellular Ca2+ influx, respectively.  相似文献   

4.
Many agonists bring about their effects on cellular functions through a rise incytosolic [Ca2+]([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studiesof single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporalorganization that is established by coordinated activation of IP3 receptor Ca2+ channels.Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors areefficiently transmitted to the mitochondria. An important function of mitochondrial calciumsignals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meetdemands for increased energy in stimulated cells. Activation of the permeability transitionpore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death.Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organizationof [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calciumsignaling as well. This paper summarizes recent research to elucidate the mechanisms andsignificance of IP3-dependent mitochondrial calcium signaling.  相似文献   

5.
Oscillations in cytoplasmic Ca2+ concentration are a universal mode of signaling following physiological levels of stimulation with agonists that engage the phospholipase C pathway. Sustained cytoplasmic Ca2+ oscillations require replenishment of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), the source of the Ca2+-releasing second messenger inositol trisphosphate. Here we show that cytoplasmic Ca2+ oscillations induced by cysteinyl leukotriene type I receptor activation run down when cells are pretreated with Li+, an inhibitor of inositol monophosphatases that prevents PIP2 resynthesis. In Li+-treated cells, cytoplasmic Ca2+ signals evoked by an agonist were rescued by addition of exogenous inositol or phosphatidylinositol 4-phosphate (PI4P). Knockdown of the phosphatidylinositol 4-phosphate 5 (PIP5) kinases α and γ resulted in rapid loss of the intracellular Ca2+ oscillations and also prevented rescue by PI4P. Knockdown of talin1, a protein that helps regulate PIP5 kinases, accelerated rundown of cytoplasmic Ca2+ oscillations, and these could not be rescued by inositol or PI4P. In Li+-treated cells, recovery of the cytoplasmic Ca2+ oscillations in the presence of inositol or PI4P was suppressed when Ca2+ influx through store-operated Ca2+ channels was inhibited. After rundown of the Ca2+ signals following leukotriene receptor activation, stimulation of P2Y receptors evoked prominent inositol trisphosphate-dependent Ca2+ release. Therefore, leukotriene and P2Y receptors utilize distinct membrane PIP2 pools. Our findings show that store-operated Ca2+ entry is needed to sustain cytoplasmic Ca2+ signaling following leukotriene receptor activation both by refilling the Ca2+ stores and by helping to replenish the PIP2 pool accessible to leukotriene receptors, ostensibly through control of PIP5 kinase activity.  相似文献   

6.
In single rabbit aortic smooth muscle cells, and at a concentration known to induce a maximum sustained increase of intracellular Ca2+ via activation of the steady-state voltage dependent R-type Ca2+ channels, endothelin-1 (10-7 M) and insulin (80 U/ml) were found to induce a sustained increase in cytosolic free Ca2+ ([Ca]i) levels that was significantly attenuated by pre-treatment with either pertussis toxin (PTX), cholera toxin (CTX) or removal of extracellular Ca2+.However, both PTX and CTX failed to inhibit the sustained depolarization-evoked sustained Ca2+ influx and [Ca]i elevation via activation of the R-type Ca2+ channels. Moreover, ET-1 and insulin-evoked sustained increases in Ca2+ influx were not attenuated by the selective PKC inhibitor, bisindolylmaleimide (BIS), or the specific L-type Ca2+ channel blocker, nifedipine, but were completely reversed by the R-type Ca2+ channel blocker, (-) PN 200-110 (isradipine). These data suggest that both insulin and ET-1 activate the nifedipine-insensitive but isradipine-sensitive steady state voltage dependent R-type Ca2+ channels present on rabbit VSMCs and these channels are directly coupled to PTX and CTX sensitive G protein(s).  相似文献   

7.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

8.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Presynaptic nicotinic acetylcholine receptors (nAChRs) have long been implicated in the modulation of CNS circuits. We previously reported that brief exposure to low concentrations of nicotine induced sustained potentiation of glutamatergic transmission at ventral hippocampal (vHipp)-striatal synapses. Here, we exploited nAChR subtype-selective antagonists and agonists and α7*nAChR knockout mutant mice (α7-/-) to elucidate the signaling mechanisms underlying nAChR-mediated modulation of synaptic transmission. Using a combination of micro-slices culture from WT and α7-/-mice, calcium imaging, and immuno-histochemical techniques, we found that nicotine elicits localized and oscillatory increases in intracellular Ca2+ along vHipp axons that persists for up to 30 minutes. The sustained phase of the nicotine-induced Ca2+ response was blocked by α-BgTx but not by DHβE and was mimicked by α7*nAChR agonists but not by non-α7*nAChR agonists. In vHipp slices from α7-/- mice, nicotine elicited only transient increases of axonal Ca2+ signals and did not activate CaMKII. The sustained phase of the nicotine-induced Ca2+ response required localized activation of CaMKII, phospholipase C, and IP3 receptor mediated Ca2+-induced Ca2+ release (CICR). In conclusion, activation of presynaptic nAChRs by nicotine elicits Ca2+ influx into the presynaptic axons, the sustained phase of the nicotine-induced Ca2+ response requires that axonal α7*nAChR activate a downstream signaling network in the vHipp axons.  相似文献   

10.
Intercellular Ca2+ waves can coordinate the action of large numbers of cells over significant distances. Recent work in many different systems has indicated that the release of ATP is fundamental for the propagation of most Ca2+ waves. In the organ of hearing, the cochlea, ATP release is involved in critical signalling events during tissue maturation. ATP-dependent signalling is also implicated in the normal hearing process and in sensing cochlear damage. Here, we show that two distinct Ca2+ waves are triggered during damage to cochlear explants. Both Ca2+ waves are elicited by extracellular ATP acting on P2 receptors, but they differ in their source of Ca2+, their velocity, their extent of spread and the cell type through which they propagate. A slower Ca2+ wave (14 μm/s) communicates between Deiters’ cells and is mediated by P2Y receptors and Ca2+ release from IP3-sensitive stores. In contrast, a faster Ca2+ wave (41 μm/s) propagates through sensory hair cells and is mediated by Ca2+ influx from the external environment. Using inhibitors and selective agonists of P2 receptors, we suggest that the faster Ca2+ wave is mediated by P2X4 receptors. Thus, in complex tissues, the expression of different receptors determines the propagation of distinct intercellular communication signals.  相似文献   

11.
Store-operated Ca2+ entry (SOCE) from the extracellular space plays a critical role in agonist-mediated Ca2+ signaling in non-excitable cells. Here we show that SOCE is enhanced in COS-7 cells treated with staurosporine (ST), a protein kinase inhibitor. In COS-7 cells, stimulation with ATP induced Ca2+ release from intracellular Ca2+ stores and Ca2+ entry from the extracellular space. Ca2+ release was not affected by treatment with ST, but Ca2+ entry continued in the ST-treated cells even after the removal of ATP. ST did not inhibit Ca2+ sequestration into Ca2+ stores. The Ca2+ entry induced by cyclopiazonic acid (CPA), a reversible ER Ca2+ pump inhibitor, was maintained in ST-treated cells even after the removal of CPA, but was not maintained in the control cells. The sustained Ca2+ entry in ST-treated cells was completely attenuated by the SOCE inhibitors, La3+ and 2-APB. The large increase in Ca2+ entry produced in the cells co-expressing Venus-Orai1 and STIM1-mKO1 was stabilized with ST treatment, and confocal imaging of these cells suggested that the complex between Orai1 and STIM1 did not completely dissociate following the refilling of Ca2+ stores. These results show that SOCE remains activated even after the refilling of Ca2+ stores in ST-treated cells and that the effect of ST on SOCE may result from a stabilization of the Orai1–STIM1 interaction.  相似文献   

12.
The source, time course and stoichiometry of cytosolic free Ca2+ ([Ca2+]i) during contraction were examined in smooth muscle cells isolated from the guinea pig and human stomach. Contraction by receptor-linked agonists (eg, acetylcholine, cholecystokinin octapeptide and Met-enkephalin) was preceded by stoichiometric increases in [Ca2+]i and net 45Ca2+ efflux that were maintained in the absence of extracellular Ca2+ or in the presence of a Ca2+ channel blocker (13600). The intracellular Ca2+ store could be depleted by repeated stimulation with all agonists in Ca2+-free medium or in the presence of 13600 resulting in loss of contractile response; response was restored by re-exposure of the cells to Ca2+.The source of intracellular Ca2+ an the signal for its release were examined in saponin-permeabilized muscle cells. The cells retained their ability to contract in response to receptor-linked agonists and developed an ability to contract in response to inositol trisphosphate (IP3). The cells accumulated Ca2+ to the same extent as intact muscle cells, but only in the presence of ATP. IP3 caused a prompt, concentration-dependent increase in contraction, [Ca2+]i and net 45Ca2+ efflux. These effects were maximally similar to those produced by CCK-8 alone or in combination with IP3: Depletion of the Ca2+ store by repeated stimulation of single muscle cells in Ca2+-free medium with IP3, acetylcholine or CCK-8 separately resulted in loss of contractile response to all three agents; the response was restored by re-exposure of the muscle cell to a cytosol-like perfusate (Ca2+ 180 nM).The studies demonstrate that a product of membrane phosphoinositide hydrolysis is capable of mobilizing Ca2+ from a depletable, non-mitochondrial intracellular store that is utilized by receptor-linked agonists. The magnitude of IP3-induced Ca2+ release is correlated with contraction.  相似文献   

13.
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced and secreted mainly by endothelial cells. Recent studies indicate that ET-1 can regulate lipid metabolism, which may increase the risk of insulin resistance. Our previous studies revealed that ET-1 induced lipolysis in adipocytes, but the underlying mechanisms were unclear. 3T3-L1 adipocytes were used to investigate the effect of ET-1 on lipolysis and the underlying mechanisms. Glycerol levels in the incubation medium and hormone-sensitive lipase (HSL) phosphorylation were used as indices for lipolysis. ET-1 significantly increased HSL phosphorylation and lipolysis, which were completely inhibited by ERK inhibitor (PD98059) and guanylyl cyclase (GC) inhibitor (LY83583). LY83583 reduced ET-1-induced ERK phosphorylation. A Ca2+-free medium and PLC inhibitor caused significant decreases in ET-1-induced lipolysis as well as ERK and HSL phosphorylation, and IP3 receptor activator (D-IP3) increased lipolysis. ET-1 increased cGMP production, which was not affected by depletion of extracellular Ca2+. On the other hand, LY83583 diminished the ET-1-induced Ca2+ influx. Transient receptor potential vanilloid-1 (TRPV-1) antagonist and shRNA partially inhibited ET-1-induced lipolysis. ET-1-induced lipolysis was completely suppressed by CaMKIII inhibitor (NH-125). These results indicate that ET-1 stimulates extracellular Ca2+ entry and activates the intracellular PLC/IP3/Ca2+ pathway through a cGMP-dependent pathway. The increased cytosolic Ca2+ that results from ET-1 treatment stimulates ERK and HSL phosphorylation, which subsequently induces lipolysis. ET-1 induces HSL phosphorylation and lipolysis via the GC/cGMP/Ca2+/ERK/CaMKIII signaling pathway in 3T3-L1 adipocytes.  相似文献   

14.
Abstract: A cDNA encoding a guinea pig histamine H1 receptor was stably expressed in Chinese hamster ovary (CHO) cells. In one resulting clone, named CHO(H1), the H1 receptor was found to be coupled to several major signal transduction pathways. In each case the involvement of a Gi/Go protein with pertussis toxin (PTX) was assessed, as well as the influence of extracellular Ca2+ and of protein kinase C activation by phorbol 12-myristate 13-acetate (PMA). Histamine induced, in a PTX- and PMA-insensitive manner, a biphasic increase in the intracellular Ca2+ level of which only the second sustained phase was dependent on the extracellular Ca2+ level. Histamine also caused a threefold elevation of inositol phosphate production, which was PTX-insensitive, but slightly inhibited by PMA and reduced by 75% in the absence of extracellular Ca2+. Histamine also caused a massive release of arachidonic acid, which occurred in a Ca2+- and PMA-sensitive manner, probably through the activation of a cytosolic phospholipase A2, which partly involves coupling to a PTX-sensitive G protein. In comparison, in HeLa cells endowed with a native H1 receptor, the histamine-induced arachidonic acid release was also Ca2+- and PMA-sensitive, but totally PTX-insensitive. Finally, in CHO(H1) cells, histamine in very low concentrations potentiated the cyclic AMP accumulation induced by forskolin. This response appeared to be insensitive to PTX, extracellular Ca2+, and PMA. These various observations show that stimulation of a single receptor subtype, the guinea pig H1 receptor, can trigger four major intracellular signals through coupling to several G proteins that are variously modulated by extracellular Ca2+ and protein kinase C activation.  相似文献   

15.
d-glucose (16.7 mM) stimulates the synthesis of polyphosphoinositides in in intact pacreatic islets prelabelled with tritiated myo-inositol and incubated in the absence of extracellular Ca2+. ATP (1.0 mM) exerts a comparable effect in sonicates of prelabelled normal or tumoral islet cells. In the acellular system, ATP fails to affect the generation of tritiated inositol phosphates in the absence of Ca2+, but augments the Ca2+-stimulated production of inositol mono-, bis- and triphosphates. The latter effect is not reproduced by α, ß-methylene ATP, suggesting that it is not attributable to a purinergic mechanism. Whether in the absence or presence of ATP, the Ca2+-induced increment in inositol phosphates production coincides with a comparable decrease in tritiated polyphosphoinositides. It is proposed, therefore, that the increased production of inositol phosphates in intact islets stimulated by nutrient secretagogues is attributable, in part at least, to an accelerated generation of polyphosphoinositides, possibly resulting from a rise in cytosolic ATP concentration.  相似文献   

16.
The microcirculation is the site of gas and nutrient exchange. Control of central or local signals acting on the myocytes, pericytes and endothelial cells within it, is essential for health. Due to technical problems of accessibility, the mechanisms controlling Ca2+ signalling and contractility of myocytes and pericytes in different sections of microvascular networks in situ have not been investigated. We aimed to investigate Ca2+ signalling and functional responses, in a microcirculatory network in situ. Using live confocal imaging of ureteric microvascular networks, we have studied the architecture, morphology, Ca2+ signalling and contractility of myocytes and pericytes. Ca2+ signals vary between distributing arcade and downstream transverse and precapillary arterioles, are modified by agonists, with sympathetic agonists being ineffective beyond transverse arterioles. In myocytes and pericytes, Ca2+ signals arise from Ca2+ release from the sarcoplasmic reticulum through inositol 1,4,5-trisphosphate-induced Ca2+ release and not via ryanodine receptors or Ca2+ entry into the cell. The responses in pericytes are less oscillatory, slower and longer-lasting than those in myocytes. Myocytes and pericytes are electrically coupled, transmitting Ca2+ signals between arteriolar and venular networks dependent on gap junctions and Ca2+ entry via L-type Ca2+ channels. Endothelial Ca2+ signalling inhibits intracellular Ca2+ oscillations in myocytes and pericytes via L-arginine/nitric oxide pathway and intercellular propagating Ca2+ signals via EDHF. Increases of Ca2+ in pericytes and myocytes constrict all vessels except capillaries. These data reveal the structural and signalling specializations allowing blood flow to be regulated by myocytes and pericytes.  相似文献   

17.
Abstract

The activation of Ca2+-mobilising receptors on hepatocytes and many other cells leads to a prompt reduction in the cellular content of inositol phospholipids. The primary event which underlies these changes is, most probably, a phospholipase C-catalysed attack upon phosphatidylinositol 4,5 bisphosphate. The receptor-mediated breakdown of this lipid in stimulated cells is: (i) not mediated by an increase in cytosol [Ca2+] and (ii) closely coupled to receptor occupation. Phosphatidylinositol 4,5 bisphosphate degradation may be studied by measuring the appearance of the water-soluble product, inositol trisphosphate (and its metabolites: inositol bisphosphate and inositol monophosphate), in stimulated cells. Recent evidence indicates that inositol trisphosphate and the lipid soluble product of phosphatidylinositol 4,5 bisphosphate breakdown, 1,2 diacylglycerol, may act as ‘second messengers’ which mediate the effects of many extracellular signals in stimulated cells.  相似文献   

18.
The aim of the present study is to elucidate the effects of the expression of large conductance Ca2+ activated K+ channels (BKCa) in an endothelial cell type normally lacking this channel. The human homologue hslo of BKCa was expressed in cultured bovine pulmonary artery endothelial (CPAE) cells, which have no endogenous BKCa. Membrane potential, ionic currents and Ca2+ signals were investigated in non-transfected and transfected cells using a combined patch clamp and Fura-2 fluorescence technique. In non-transfected control CPAE cells, ATP evoked a Ca2+ activated CI current (Icl,ca). The most prominent current component during ATP stimulation in hslo expressing cells was conducted 13K Ca which resulted in a pronounced transient hyperpolarization. This hyperpolarization, which was absent in non-transfected cells, was enhanced if ICl,Ca was blocked with niflumic acid. The sustained component of the Ca2+ response during ATP stimulation was significantly larger in hslo transfected cells than in non-transfected cells. This plateau level correlated well with the corresponding effects of ATP on the membrane potential, indicating that the expression of cloned BKCa exerts a positive feedback on Ca2+ signals in endothelial cells by counteracting the negative (depolarizing)effect of stimulation of Ca2+-activated CI channels.  相似文献   

19.
We explored the relationship between nucleotide-evoked changes in intracellular free calcium ([Ca2+] i ) and anion secretion by measuring [Ca2+] i and I SC simultaneously in Fura-2-loaded, cultured equine sweat gland epithelia. Apical ATP, UTP or UDP elicited sustained increases in [Ca2+] i that were initiated by the mobilization of cytoplasmic Ca2+ but maintained by Ca2+ influx. However, although these nucleotides also increased I SC , this response was transient whereas the [Ca2+] i signals were sustained. Experiments in which external Ca2+ was removed/replaced showed that Ca2+ entering nucleotide-stimulated cells elicited very little change in I SC . Cross desensitization experiments showed that UTP-stimulated epithelia became insensitive to ATP but that UTP could increase both [Ca2+] i and I SC in ATP-stimulated cells by activating `pyrimidinoceptors' essentially insensitive to ATP. Thapsigargin evoked a sustained rise in [Ca2+] i that was accompanied by a maintained increase in I SC . However, this increase in I SC was dependent upon external Ca2+ and so the responses to nucleotides and thapsigargin have different properties. ATP increased I SC in thapsigargin-treated cells without causing any rise in [Ca2+] i while ionomycin increased both parameters. The data therefore show that apical P2Y receptors allow nucleotides to increase I SC via two mechanisms, one of which appears to be [Ca2+] i -independent control of anion channels. Received: 8 December 1998/Revised: 23 April 1999  相似文献   

20.
It is often observed in intracellular Ca2+ imaging experiments that the amplitudes of the Ca2+ signals elicited by newly characterized TRP agonists do not correlate with the amplitudes of the responses evoked subsequently by a specific potent agonist. We investigated this rather controversial phenomenon by first testing whether it is inherent to the comparison of the effects of weak and strong stimuli. Using five well-characterized TRP channel agonists in commonly used heterologous expression systems we found that the correlation between the amplitudes of the Ca2+ signals triggered by two sequentially applied stimuli is only high when both stimuli are strong. Using mathematical simulations of intracellular Ca2+ dynamics we illustrate that the innate heterogeneity in expression and functional properties of Ca2+ extrusion (e.g. plasma membrane Ca2+ ATPase) and influx (TRP channels) pathways across a cellular population is a sufficient condition for low correlation between the amplitude of Ca2+ signals elicited by weak and strong stimuli. Taken together, our data demonstrate that this phenomenon is an expected outcome of intracellular Ca2+ imaging experiments that cannot be taken as evidence for lack of specificity of low-efficacy stimuli, or as an indicator of the need of other cellular components for channel stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号