首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Based on ticlopidine active as an ADP receptor antagonist for inhibiting platelet aggregation in clinical test, and upon finding (±)-1,2-substituted-7-sulfonylamide/amide-1,2,3,4-tetrahydroisoquinoline (11–31) inhibited of platelet aggregation, a series of (±)-1-o-chlorophenyl-2-substituted-tetrahydroisoquinoline derivatives was designed and synthesized. Four analogs proved to be potential antiplatelet aggregation agents, and compound 9 (TQP-3, applying for patent) which inhibits ADP-induced human platelet aggregation with IC50 values of approximately 0.206 nM was the most active. Compound 2 is more active than compound 1, which (Type I) is similar to ticlopidine. This is because there is a spacial hindrance in compound 1, and the o-chloro group of compound 2 may play the same a role as o-chloro group of ticlopidine. On the other hand, with the different substitutions at different positions on the 2-substituted phenylacyl group, their inhibition of platelet aggregation differs. These compounds with m-substituted group (5, 7, 9) showed a higher IC50 value for inhibiting ADP-induced human platelet aggregation than those with o-substituted group (4, 6) or p-substituted group (3, 8). It was observed that their inhibition is bromine-substituted derivative (9), chlorine-substituted derivative (7), and nitro-substituted derivative (5) in turn. Moreover, these compounds (Type II) may be more similar to clopidogrel than to ticlopidine due to the acyl group at 2 position of the nucleus playing a role as the ester group of clopidogrel. It was conjectured that these analogs function as a potential antiplatelet aggregation role by acting as ADP receptor antagonists.  相似文献   

2.
This paper describes the design, synthesis and pharmacological evaluation of new N-acylhydrazone (NAH) compounds, belonging to the N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone class (2a-p). Classical heteroaromatic ring bioisosterism strategies were applied to the previously reported N-phenylpyrazolyl-4-acylhydrazone derivative 1, elected as lead-compound due to its important anti-aggregating profile on arachidonic acid induced platelet aggregation (IC(50)=24+/-0.5 micro M), from which emerge this new series 2. These new compounds 2a-p were readily synthesized, characterized and tested on platelet aggregation assays induced by collagen (5 micro g/mL), ADP (5 micro M) and arachidonic acid (100 micro M) in rabbit citrated platelet-rich plasma. Compounds 2b, 2d, and 2h were found to be the most potent, exhibiting a significant antiplatelet activity on arachidonic acid- and collagen-induced platelet aggregation. In addition, these new antiplatelet agents are free of gastric ulcerogenic effect and presented discrete anti-inflammatory and analgesic properties. The N-para-chlorophenyltriazolyl-4-acylhydrazone compound 2h produced the highest inhibitory effect on collagen (IC(50)=21.6+/-0.4 micro M) and arachidonic acid-induced platelet aggregation (IC(50)=2.2+/-0.06 micro M), suggesting that the nature of the substituent on the phenyl ring of the N-heteroaromatic system of NAH moiety may be an important structural requirement for the improvement of antiplatelet activity, in comparison with lead-series 1.  相似文献   

3.
As a further part of our chemical and biological studies in this field, we describe the multistep preparations of the properly substituted 2-(1-piperazinyl)chromone 1b, 4-(1-piperazinyl)coumarins 5c-h, their linear benzo-fused analogues 4a,b and 8a,b, bicyclic (15e-g) and tricyclic (15h,i) fused derivatives of 6-(1-piperazinyl)pyrimidin-4(3H)-one, and of the 4H-pyrido[1,2-a]pyrimidine derivatives 9b,c. The in vitro evaluation of their inhibitory properties towards human platelet aggregation induced in platelet-rich plasma by ADP, collagen, or the Ca (2+)ionophore A23187 showed the high activity of compounds 5d-g and 15f,g,i, among which the coumarins 5g and 5d proved to be, in that order, the most effective in vitro antiplatelet agents until now synthesized by us. Thus, in order to consider also the 4-aminocoumarin structural class, we developed a new statistically significant 3-D QSAR model, more general than the one previously obtained, through a further CoMFA study based on the antiplatelet activity data and molecular steric and electrostatic potentials of both the previously studied and herein described compounds.  相似文献   

4.
2-(1-Piperazinyl)-4H-pyrido[1,2-a]pyrimidin-4-one (5a) is a recently described in vitro inhibitor of human platelet aggregation which specifically inhibits the activity of high affinity cAMP phosphodiesterase. A number of substitution derivatives, isosteres, and analogues of 5a were now synthesized and tested in vitro for their inhibitory activity on human platelet aggregation induced in platelet-rich plasma by ADP, collagen, or the Ca2+ ionophore A23187. Among the most effective compounds, the 6-methyl, 8-methyl and 6,8-dimethyl derivatives of 5a resulted nearly as active as the lead when platelet aggregation was induced by ADP or A23187, but less active when collagen was the inducer. On the basis of present results and those previously obtained by us in this and 2-aminochromone structural fields, we have developed a statistically significant 3-D QSAR model, using comparative molecular field analysis (CoMFA), describing the variation of the antiplatelet activity in terms of molecular steric and electrostatic potential changes.  相似文献   

5.
In this work, we reported the synthesis and evaluation of the analgesic, anti-inflammatory, and antipyretic properties of new 2-(6-nitro-benzo[1,3]dioxol-5-yloxy)-acetylhydrazone derivatives (3), designed exploring molecular hybridization and isosteric replacement approaches between nimesulide (1) and carbanalogue NAH series (2) developed at LASSBio. Target compounds were synthesized in very good yields exploiting abundant Brazilian natural product safrole (4) as starting material. The evaluation of the antinociceptive properties of this series led us to discover a new potent prototype of analgesic and antipyretic agent, that is, NAH derivative 3c, named LASSBio-891, which showed to be more potent than dipyrone used as standard.  相似文献   

6.
Certain oxime- and amide-containing quinolin-2(1H)-one derivatives were synthesized and evaluated for their antiproliferative and antiplatelet activities. These compounds were synthesized via alkylation of hydroxyl precursors followed by the reaction with NH(2)OH or NaN(3) (Schmidt reaction). The preliminary assays indicated that amide derivatives are either weakly active or inactive while the oxime counterparts exhibited potent inhibitory activities against platelet aggregation induced by collagen, AA (arachidonic acid), and U46619 (the stable thromboxan A(2) receptor agonist). Among them, (Z)-6-[2-(4-methoxyphenyl)-2-hydroxyiminoethoxy]quinolin-2(1H)-one (7c) was the most active against AA induced platelet aggregation with an IC(50) of 0.58microM and was inactive against cell proliferation. For the inhibition of U46619 induced aggregation, 7a and 8a-c exhibited very potent activities with IC(50) values in a range between 0.54 and 0.74microM. For the antiproliferative evaluation, N-(biphenyl-4-yl)-2-(2-oxo-1,2-dihydroquinolin-7-yloxy)acetamide (11d) was the most potent with GI(50) values of <10, 10.8, and <10microM against the growth of MT-2, NCI-H661, and NPC-Tw01, respectively, and possessed only a weak antiplatelet activity. Further evaluation of 11d as a potential anticancer agent is on-going.  相似文献   

7.
In this work we reported the synthesis and the trypanocidal profile of new 1,3,4-thiadiazole-2-arylhydrazone derivatives of nitroimidazole series (4) or phenyl series (5), designed by exploring the molecular hybridization approach between megazol (2) and guanyl hydrazone derivative (3). The evaluation of the activity against bloodstream trypomastigote forms of Trypanosoma cruzi forms lead us to identify a new potent trypamomicide prototype, that is, brazilizone A (4k), which present an IC50/24 h = 5.3 μM.  相似文献   

8.
epsilon-Aminocaproic acid (EACA) is a synthetic low molecular drug with antifibrinolytic activity. However, treatment with this drug can be incidentally associated with an increased thrombotic tendency. The aim of the present work was to test synthetic EACA derivatives for their antiplatelet activities. We investigated the effect of three EACA derivatives with antifibrinolytic activity: I. epsilon-aminocaproyl-L-leucine hydrochloride (HClH-EACA-L-Leu-OH), II. epsilon-aminocaproyl-L-(S-benzyl)-cysteine hydrochloride (HClH-EACA-L-Cys(S-Bzl)-OH) and III. epsilon-aminocaproyl-L-norleucine (H-EACA-L-Nle-OH) on platelet responses (aggregation and adhesion) and on their integrity. It was found that: 1. as judged by LDH release test, none of the tested compounds, up to 20 mM, was toxic to platelets, 2. in comparison with EACA, all the synthetic derivatives inhibited much stronger the ADP- and collagen-induced aggregation of platelets suspended in plasma (platelet rich plasma) and aggregation of these cells in whole blood, 3. EACA and its derivatives exerted a similar inhibitory effect on the thrombin-induced adhesion of platelets to fibrinogen-coated surfaces. Since platelet activation and blood coagulation are tightly associated processes, the antiplatelet properties of EACA derivatives are expected to indicate reduced thrombotic properties of these derivatives compared to EACA.  相似文献   

9.
In the present paper, a novel series of dibenzofuran-piperazine derivatives were synthesized via the treatment of N-(2-methoxy-3-dibenzofuranyl)-2-chloroacetamide with substituted piperazine derivatives. The chemical structures of the compounds were elucidated by 1H NMR, 13C NMR, mass spectral data; elemental analysis and HPLC analysis. Each derivative was evaluated for antiplatelet activity and anticholinesterase activity. Compound 2?m with 2-furoyl moiety exhibited high percentage inhibition as much as standard drug aspirin on arachidonic acid (AA)-induced platelet aggregation. None of the compounds presented significant inhibitor effect on collagen-induced platelet aggregation. Furthermore, the anticholinesterase activity of the compounds was determined and they did not show promising inhibitor activity compared with standard drug donepezil.  相似文献   

10.
Ischemic stroke resulting from obstruction of blood vessels is an enormous public health problem with urgent need for effective therapy. The co-administration of thrombolytic/antiplatelet agent and neuroprotective agent improves therapeutic efficacy and agent possessing both thrombolytic/antiplatelet and antiradical activities provides a promising strategy for the treatment of ischemic stroke. We have previously reported a novel compound, namely TBN, possessing both antiplatelet and antiradical activities, showed significant neuroprotective effect in a rat stroke model. We herein report synthesis of a series of new pyrazine derivatives, and evaluation of their biological activities. Their mechanisms of action were also investigated. Among these new derivatives, compound 21, armed with two nitrone moieties, showed the greatest neuroprotective effects in vitro and in vivo. Compound 21 significantly inhibited ADP-induced platelet aggregation. In a cell free antiradical assay, compound 21 was the most effective agent in scavenging the three most damaging radicals, namely (·)OH, O(2)(·-) and ONOO(-).  相似文献   

11.
Ten zoanthamine-type alkaloids from two marine zoanthids belonging to the Zoanthus genus (Zoanthus nymphaeus and Zoanthus sp.) along with one semisynthetic derivative were evaluated for their antiplatelet activities on human platelet aggregation induced by several stimulating agents. 11-Hydroxyzoanthamine (11) and a synthetic derivative of norzoanthamine (16) showed strong inhibition against thrombin-, collagen- and arachidonic acid-induced aggregation, zoanthenol (15) displayed a selective inhibitory activity induced by collagen, while zoanthaminone (10) behaved as a potent aggregant agent. These evaluations allowed us to deduce several structure-activity relationships and suggest some mechanisms of action for this type of compounds.  相似文献   

12.
The B(6) vitamers have been shown to display beneficial therapeutic effects in cardiovascular related disorders. The design of novel antiplatelet agents using pyridoxine as a template has led to the discovery of a class of novel cardio- and cerebro-protective agents. The present study describes the synthesis of several of these derivatives along with the antiplatelet and antiischemic activity of derivative 16.  相似文献   

13.
As widely assumed, platelets and coagulation system heavily influence the pathogenesis and progression of cardiovascular diseases. Some 1,4-naphthoquinone derivatives, such as vitamin K3, have been reported to increase the synthesis of coagulation proteins. In this study, we examine how 2-p-mercaptophenyl -1,4-naphthoquinone (NTP), a newly synthesized 1,4-naphthoquinone derivative, affects the platelet function in humans. A tapered parallel plate chamber which provided a range of shear stress covering the entire physiological range in human circulation is used to assess platelet adhesiveness on fibrinogen coated-surface. In addition, platelet aggregation and thromboxane B2 (TXB2) production by inducers are evaluated by the turbidimetric method and enzyme immunoassay kit, respectively. Moreover, platelets [Ca2+]i are measured using a dual-wavelength fluorescence spectrophotometer. Analysis results indicate that 1) NTP decreases the percentages of attached platelets at the locations in various shear stresses and the levels of platelet adhesiveness, denoted as the slope; 2) NTP can inhibit the platelet aggregation by ADP (2 microM) and collagen (25 microg/ml), and the IC50 are: 0.32 and 26.83 microg/ml, respectively; and 3) NTP markedly inhibits TXB2 formation and platelet [Ca2+]i elevation caused by ADP and collagen. Therefore, we conclude that NTP may inhibit platelet adhesiveness on fibrinogen coated-surface, aggregability, [Ca2+]i, and thromboxane production, and that it may be used as an antiplatelet agent.  相似文献   

14.
Naphthalimide derivatives have multiple biological activities, including antitumour and anti-inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5–10 μM) inhibited collagen- and convulxin- but not thrombin- or U46619-mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.  相似文献   

15.
Calreticulin transacetylase (CRTAase) is known to catalyze the transfer of acetyl group from polyphenolic acetates (PA) to certain receptor proteins (RP), thus modulating their activity. Herein, we studied for the first time the substrate specificity of CRTAase towards N-acetylamino derivatives of coumarins and quinolones. This study is endowed with antiplatelet action by virtue of causing CRTAase catalyzed activation of platelet Nitric Oxide Synthase (NOS) by way of acetylation leading to the inhibition of ADP/Arachidonic acid (AA)-dependent platelet aggregation. Among all the N-acetylamino/acetoxy coumarins and quinolones screened, 7-N-acetylamino-4-methylcoumarin (7-AAMC, 17) was found to be the superior substrate to platelet CRTAase and emerged as the most promising antiplatelet agent both in vitro and in vivo. Further it caused the inhibition of cyclooxygenase-1 (Cox-1) resulting in the down regulation of thromboxane A2 (TxA2), modulation of tissue factor and the inhibition of platelet aggregation. It was also found effective in the inhibition of LPS induced pro-thrombotic conditions.  相似文献   

16.
Synthesis and evaluation of the activity of new N(1)-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives against a chloroquine-resistant strain of Plasmodium falciparum are described. Selectivity indices were improved for two compounds versus the lead 1, the bis-cyclopropylmethyl derivative, thus increasing the therapeutic interest of our family. As our previous studies conducted on the mode of action of our compounds made us hypothesize the existence of original mechanisms and/or original targets, terminal amino derivatives can be considered as promising tools further mechanistical studies, as probes for affinity chromatography.  相似文献   

17.
In this work, we report the synthesis and the antimycobacterial evaluation of new trans-cinnamic acid derivatives of isonicotinic acid series (5) and benzoic acid series (6), designed by exploring the molecular hybridization approach between isoniazid (1) and trans-cinnamic acid derivative (3). The minimum inhibitory concentration (MIC) of the compounds 5a-d and 6c exhibited activity between 3.12 and 12.5 microg/mL and could be a good start point to find new lead compounds against multi-drug resistant tuberculosis.  相似文献   

18.
Platelet aggregation is one of the main events involved in vascular thrombus formation. Recently, N′-substituted-phenylmethylene-3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-4-carbohydrazides were described as antiplatelet derivatives. In this work, we explore the properties of these antiplatelet agents through a series of pharmacological, biochemical and toxicological studies. The antiplatelet activity of each derivative was confirmed as 3a, 3b and 3?h significantly inhibited human platelet aggregation induced by arachidonic acid, with no detectable effect on clotting factors or healthy erythrocytes. Importantly, mice treated with derivative 3a showed a higher survival rate at an in vivo model of pulmonary thromboembolism with a lower bleeding risk in comparison to aspirin. The in silico studies pointed a series of structural parameters related to thromboxane synthase (TXS) inhibition by 3a, which was confirmed by tracking plasma levels of PGE2 and TXB2 through an in vitro enzyme immunoassay. Derivative 3a showed selective TXS inhibition allied with low bleeding risk and increased animal survival, revealing the derivative as a promising candidate for treatment of cardiovascular diseases.  相似文献   

19.
A series of novel nitric oxide releasing derivatives of 6-amino-3-n-butylphthalide were designed, synthesized and evaluated as potential antiplatelet agents. Compound 10b significantly inhibited the adenosine diphosphate (ADP)-induced platelet aggregation in vitro, superior to 6-amino-3-n-butylphthalide, 3-n-butylphthalide (NBP) and ticlopidine. Meanwhile 10b released moderate levels of NO, which could be beneficial for improving cardiovascular and cerebral circulation. Furthermore, 10b had an enhanced aqueous solubility relative to NBP. These findings may provide new insights into the development of novel antiplatelet agents for the treatment of thrombosis-related ischemic stroke.  相似文献   

20.
Previously, ethyl 4-(1-benzyl-1H-indazol-3-yl)benzoate (YD-3) was identified by us as the first non-peptide protease-activated receptor 4 (PAR4) antagonist. To continue on our development of novel anti-PAR4 agents, YD-3 was used as a lead compound and a series of its derivatives were synthesized and evaluated for their selective anti-PAR4 activity. Through structure-activity relationship (SAR) study, we identified the important functional groups contributing to anti-PAR4 activity, and these functional groups were kept intact during subsequent structural modification. Several new compounds with anti-PAR4 activity comparable to YD-3 were identified. Among them, ethyl 4-[1-(3-chlorobenzyl)-1H-indazol-3-yl]benzoate (33) showed the most potent inhibitory effect on PAR4-mediated platelet aggregation, ATP release, and P-selectin expression. On the other hand, ethyl 4-(1-phenyl-1H-indazol-3-yl)benzoate (83) exhibited dual inhibitory effects on PAR4 and thromboxane formation from arachidonic acid. The above findings can be used as guidelines for development of novel antiplatelet drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号