共查询到20条相似文献,搜索用时 0 毫秒
1.
E. J. Billo 《Journal of inorganic biochemistry》1979,11(4):331-339
Rate constants for the interaction of a number of ligands with the active site zinc ion of carboxypeptidase A have been measured at pH 7.0, 25 degrees, 1.0 M NaCl. Polydentate ligands such as EDTA, NTA or CyDta do not accelerate the rate at which the zinc ion dissociates from the protein. Bidentate or tridentate ligands on the other hand are able to attack the zinc ion directly; the rates are first order in enzyme and first order in ligand. A mechanism for the reaction is proposed, in which a ternary complex LZnCPA is formed which rapidly dissociates into ZnL and apo CPA. Comparison of results for a variety of ligands leads to the conclusion that in the ternary complex tridentate ligands bind to the zinc ion through only two donor groups. The reaction of 1.10-phenanthroline with ZnCPA has been studied from pH 6 to 9, and a mechanism proposed which accounts for the pH profile of the reaction. 相似文献
2.
Protein splicing involves the self-catalyzed excision of a protein-splicing element, the intein, from flanking polypeptides, the exteins, which are concomitantly joined by a peptide bond. Taking advantage of recently developed in vitro systems in which protein splicing occurs in trans to assay for protein-splicing inhibitors, we discovered that low concentrations of Zn(2+) inhibited splicing mediated both by the RecA intein from Mycobacterium tuberculosis and by the naturally split DnaE intein from Synechocystis sp. PCC6803. Inhibition by Zn(2+) was also observed with a cis-splicing system involving the RecA intein. In all experimental systems used, inhibition by Zn(2+) could be completely reversed by the addition of EDTA. Zinc ion also inhibited hydroxylamine-dependent N-terminal cleavage of the RecA intein. All other divalent transition metal ions tested were less effective as inhibitors than Zn(2+). The reversible inhibition by Zn(2+) should be useful in studies of the mechanism of protein splicing and allow structural studies of unmodified protein-splicing precursors. 相似文献
3.
A method is described to purify pancreatic carboxypeptidases B (CPB), removing contaminating endoproteinases that interfere with use of CPB for carboxy-terminal analysis or modification of proteins. The separation uses zinc chelate chromatography and is based on the property that CPB has higher affinity for immobilized zinc ions than do serine proteinases such as trypsin and chymotrypsin, which are abundant endoproteolytic activities in pancreas. CPB preparations are loaded onto a column of iminodiacetic acid-Sepharose that has been saturated with ZnCl2. A step gradient with buffers of decreasing pH is used to elute bound proteins. CPB elutes at a lower pH than do the serine proteinases. 相似文献
4.
Substrate inhibition in the hydrolysis of N-acylglycine esters by carboxypeptidase A 总被引:1,自引:0,他引:1
The rates of hydrolysis of a series of 21 N-acylglycine esters (YCONHCH2CO2CH(CH2CH3)CO2H (2)) by bovine pancreatic carboxypeptidase A (peptidyl-L-amino-acid hydrolase, EC 3.4.12.2) have been studied over the substrate concentration range 10(-4)-10(-1) M at pH 7.5, 25 degrees C, ionic strength 0.5. All substrates display substrate inhibition except Y = CH3, CH3CH2 and (CH3)3C for which normal Michaelis-Menten kinetics are observed. In all cases substrate inhibition is consistent with the formation of an ES2 complex and parameters for the second-degree rate equation v/E = (kapp2 S + kapp3 S2/KappSS)/(KappS + S + S2/KappSS) have been evaluated. For a series of eight aliphatic groups varying in size between Y = CH3 and Y = cyclo-C6H11 the following linear correlations were observed: -log KappS = 0.82 pi + 1.32 and log kapp2/KappS = 0.71 pi + 5.81 (pi is Hansch's hydrophobicity parameter). Aryl and aralkyl Y moieties deviate from these correlation lines. KappSS also depends on the hydrophobicity of Y but no quantitative correlation is obvious. Thus the Y unit of 2 is involved in a hydrophobic interaction with the enzyme when 2 binds at both the catalytically productive and inhibitor sites. Parameters for the enzymic hydrolysis of the esters YCONHCH2CO2CH(CH2CH(CH3)2)CO2H (3) (Y = C6H5(CH2)n (n = 0, 1, 2)) are also presented. Pronounced nonproductive 1: 1 enzyme.substrate complex formation is observed for each of 2: Y = C6H5(CH2)n (n = 2, 3) and 3: Y = C6H5(CH2)2. Hippurate anion is shown to be an uncompetitive inhibitor (Ki = 12 mM) for the hydrolysis of 2: Y = (CH3)3C. Data are now available which can only be interpreted in terms of at least three enzymic sites being available for hydrophobic interactions with ester substrate molecules. 相似文献
5.
Pietro E. Cippà Jivko Kamarashev Jin Chen Anna K. Kraus Stephan Segerer Laurence Feldmeyer Thomas Fehr 《Apoptosis : an international journal on programmed cell death》2013,18(3):315-323
Survival of lymphocytes and melanocyte stem cells critically depends on B cell lymphoma 2 (Bcl-2). In T lymphocytes, a basal calcineurin activity maintains Bcl-2 expression in naïve cells, and the activation of the calcineurin pathway orchestrates the regulation of the intrinsic apoptosis pathway after antigen recognition. Therefore, calcineurin inhibitors might potentiate the pro-apoptotic effect of pharmacological Bcl-2 inhibitors on lymphatic cells. In vitro, a reduced Bcl-2 expression in lymphocytes exposed to calcineurin inhibitors increased their sensitivity to the small molecule Bcl-2 inhibitor ABT-737. This correlated with an augmented pro-apoptotic activity of ABT-737 on lymphocytes in combination with cyclosporine A in naïve mice in vivo. Interestingly, similar processes were observed in melanocytes. ABT-737 induced a fur depigmentation at the site of injection, and this effect was expanded to a generalized depigmentation in combination with cyclosporine A. Thus, inhibiting calcineurin increases the pro-apoptotic potency of ABT-737 in cells depending on Bcl-2 for survival. The increased efficacy of Bcl-2 inhibitors in combination with cyclosporine A might be relevant to exploit their anti-neoplastic and immuno-modulatory properties. 相似文献
6.
7.
Carboxypeptidase H is one of several enzymes required for the processing of peptide hormone precursors. In this study, inhibition of carboxypeptidase H by its peptide products was investigated. Carboxypeptidase H activity in bovine adrenal medulla chromaffin granules and rat adrenal medulla homogenate was inhibited by the peptides Met- and Leu-enkephalin, vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone, with oxytocin and ACTH 1-14 having the least effect, at concentrations of 2-20 mM. Inhibition by amidated peptide products (vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone) show that the final products of the precursor processing pathway can regulate carboxypeptidase H. These levels of peptides are similar to known intragranular peptide concentrations indicating that product and feedback inhibition of carboxypeptidase H may play a role in the control of neuropeptide synthesis. The proenkephalin-derived peptides Met-enkephalin, Leu-enkephalin, Met-enkephalin-Arg6-Gly7-Leu8, and Met-enkephalin-Arg6-Phe7 competitively inhibited bovine and rat carboxypeptidase H with Ki values of 12.0, 6.5, 7.0, and 5.5 mM, respectively. The significantly greater Ki for Met-enkephalin may reflect the effects of higher intragranular concentration of Met-enkephalin, since one proenkephalin molecule contains four copies of Met-enkephalin and only one copy of each of the other enkephalin peptides. Thus, the products from one multivalent precursor molecule may equivalently inhibit carboxypeptidase H activity. Product inhibition of carboxypeptidase H and perhaps other processing enzymes may serve to limit the maximum peptide concentration within the secretory vesicle. 相似文献
8.
9.
Hydroxamic acids of structure RCON(OH)CH(2)CH(CH(2)C(6)H(5))CO(2)H induce micromolar competitive inhibition of catalysis for the enzyme carboxypeptidase A. Enzyme affinity depends on the nature of the acyl group, for RCO equaling HCO, CH(3)CO, FCH(2)CO, F(2)CHCO, F(3)CCO, CH(3)OCH(2)CO, or CH(3)OCO. In acid dissociation these residues yield hydroxamic acid pK(a) values that vary from 7.6 to 10.3. Profiles of inhibitory pK(i) plotted versus pH indicate characteristically a maximum effectiveness near neutrality. Weaker binding to enzyme is generally displayed in either acidic or alkaline solution, with the position of the alkaline limb of the profiles depending on the pK(a) of the inhibitor. A reverse-protonation pattern of association with the enzyme is indicated, in which the hydroxamate anion of the inhibitor displaces a relatively acidic H(2)O ligand (pK(a) of 6) from the active-site zinc ion of carboxypeptidase A. The metal-coordinating, N-substituted hydroxamic acid functional groups exist in solution as a mixture of syn and anti rotamers, with relative abundances that depend on their pK(a). A pyrrolidinone analogue having a conformationally syn-fixed cyclohydroxamic acid was not an especially potent inhibitor. Structure-activity relationships suggest design criteria for hydroxamic acid inhibitors in order to provide most effective binding with metalloenzymes. 相似文献
10.
Alkylphosphocholines are a new class of anticancer agents. The mechanisms by which these drugs display their antitumor activities are not known. In this work, we show that erucylphosphohomocholine, a new antineoplastic compound, significantly decreased ATP synthesis in isolated rat liver mitochondria at a concentration of 50 microm or higher via permeabilization of the inner membrane. At a concentration of 25 microm, it induced a moderate swelling of mitochondria, a slight decrease of the inner membrane potential, and an increase in state 4 respiration without an essential influence on state 3 respiration or the outer membrane permeability to cytochrome c. We found that cyclosporin A did not prevent mitochondrial swelling induced by 25-100 microm erucylphosphohomocholine. Moreover, cyclosporin A induced a fast drop of the inner membrane potential in the presence of 25-50 microm erucylphosphohomocholine that seems to be due to a strong synergistic inhibition of the respiratory activity. The ratio of uncoupled to state 3 respiration rates increased from 1.3 +/- 0.1 with 25 microm erucylphosphohomocholine and from 1.5 +/- 0.1 with 1 microm cyclosporin A to 4.5 +/- 0.3 in the presence of both drugs. On the other hand, oligomycin or cyclosporin A protected certain cancer cell lines against erucylphosphohomocholine-induced apoptosis. This protection might be related to a prevention of cellular ATP hydrolysis by permeabilized mitochondria and to the inhibition of the classical permeability transition pore, respectively. Our findings provide new insight into the mechanisms by which these unusual alterations of mitochondria might be involved in anticancer activity of alkylphosphocholines. 相似文献
11.
Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine 总被引:1,自引:0,他引:1
Donadelli M Costanzo C Beghelli S Scupoli MT Dandrea M Bonora A Piacentini P Budillon A Caraglia M Scarpa A Palmieri M 《Biochimica et biophysica acta》2007,1773(7):1095-1106
We investigated the ability of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) to interact with gemcitabine (GEM) in inducing pancreatic cancer cell death. The combined treatment with TSA and GEM synergistically inhibited growth of four pancreatic adenocarcinoma cell lines and induced apoptosis. This effect was associated with the induction of reactive oxygen species (ROS) by GEM, increased expression of the pro-apoptotic BIM gene by both TSA and GEM and downregulation of the 5'-nucleotidase UMPH type II gene by TSA. The expression of other genes critical for GEM resistance (nucleoside transporters, deoxycytidine kinase, cytidine deaminase, and ribonucleotide reductase genes) was not affected by TSA. The functional role of ROS in cell growth inhibition by GEM was supported by (i) a significantly reduced GEM-associated growth inhibition by the free radical scavenger N-acetyl-L-cysteine, and (ii) a positive correlation between the basal level of ROS and sensitivity to GEM in 10 pancreatic cancer cell lines. The functional role of both Bim and 5'-nucleotidase UMPH type II in cell growth inhibition by TSA and GEM was assessed by RNA interference assays. In vivo studies on xenografts of pancreatic adenocarcinoma cells in nude mice showed that the association of TSA and GEM reduced to 50% the tumour mass and did not cause any apparent form of toxicity, while treatments with TSA or GEM alone were ineffective. In conclusion, the present study demonstrates a potent anti-tumour activity of TSA/GEM combination against pancreatic cancer cells in vitro and in vivo, strongly supporting the use of GEM in combination with an HDAC inhibitor for pancreatic cancer therapy. 相似文献
12.
Pancreatic metallocarboxypeptidases are inhibited by a millimolar excess of zinc together with other exo- and endometalloproteases. We have analyzed the structure of bovine carboxypeptidase A inhibited by an excess of zinc ions using X-ray crystallography at 1.7 Å overall resolution. Under these conditions, a second zinc is observed to bind to the enzyme active site, establishing a distorted tetrahedrally coordinated complex which involves Glu-270 (the general base for catalysis), a water molecule, a chloride ion, and a hydroxide ion. This hydroxide ion forms a 114° angular bridge between the inhibitory and the catalytic zinc ions, which are at a distance of 3.3 Å from one another. The inhibitory zinc holds the hydroxide at nearly the same location as a previously observed active site water molecule (W571) and probably perturbs the substrate positioning and stereochemical rearrangements required for substrate cleavage during catalysis. 相似文献
13.
Han HY Zou HC Jeon JY Wang YJ Xu WA Yang JM Park YD 《Biochimica et biophysica acta》2007,1774(7):822-827
We found that Zn(2+) conspicuously inactivated tyrosinase in a mixed-type inhibition manner: the final level of residual activity was abolished at the equilibrium state with concentration of 0.25 mM Zn(2+). Changes of both K(m) and V(max) by various concentrations of Zn(2+) in Lineweaver-Burk plot were observed. To see whether Zn(2+) also induced conformational change of tyrosinase and how thermodynamical changes by ligand binding were occurred, the intrinsic fluorescence studies as well as calorimetric measurements were conducted. The results showed that the Zn(2+) binding to tyrosinase directly induced conformational change of tyrosinase, and the changes of thermodynamic parameters such as enthalpy (DeltaH), Gibbs free-energy (DeltaG), and entropy (DeltaS) were obtained as 60+/-7.0 kJ/mol, -14.54 kJ/mol and 248.53 J/(K mol), respectively. The inactivating effect of Zn(2+) on tyrosinase was completely prevented by incubation with bovine serum albumin, which has a Zn(2+) binding motif in its structure. We suggested that Zn(2+) ligand-binding affected the substrate's accessibility due to the conformational changes and thus, the complex type of inhibition has occurred with the calorimetric changes. 相似文献
14.
The mechanism for inhibition of enzyme activity by excess zinc ions has been studied by kinetic and equilibrium dialysis methods at pH 8.2, I = 0.5 M. With carboxypeptidase A (bovine pancreas), peptide (carbobenzoxyglycyl-L-phenylalanine and hippuryl-L-phenylalanine) and ester (hippuryl-L-phenyl lactate) substrates were inhibited competitively by excess zinc ions. The Ki values for excess zinc ions with carboxypeptidase A at pH 8.2 are all similar [Ki = (5.2-2.6) X 10(-5) M]. The apparent constant for dissociation of excess zinc ions from carboxypeptidase A was also obtained by equilibrium dialysis at pH 8.2 and was 2.4 X 10(-5) M, very close to the Ki values above. With arsanilazotyrosine-248 carboxypeptidase A ([(Azo-CPD)Zn]), hippuryl-L-phenylalanine, carbobenzoxyglycyl-L-phenylalanine, and hippuryl-L-phenyl lactate were also inhibited with a competitive pattern by excess zinc ions, and the Ki values were (3.0-3.5) X 10(-5) M. The apparent constant for dissociation of excess zinc ions from arsanilazotyrosine-248 carboxypeptidase A, which was obtained from absorption changes at 510 nm, was 3.2 X 10(-5) M and is similar to the Ki values for [(Azo-CPD)Zn]. The apparent dissociation and inhibition constants, which were obtained by inhibition of enzyme activity and spectrophotometric and equilibrium dialysis methods with native carboxypeptidase A and arsanilazotyrosine-248 carboxypeptidase A, were almost the same. This agreement between the apparent dissociation and inhibition constants indicates that the zinc binding to the enzymes directly relates to the inhibition of enzyme activity by excess zinc ions. Excess zinc ions were competitive inhibitors for both peptide and ester substrates.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
16.
17.
The diastereomers of L-alpha-[ [S-(2-phenylethyl)sulfonimidoyl]methyl]benzenepropanoic acid bind differentially to carboxypeptidase A. These putative transition state-analogue inhibitors show unique and interpretationally significant pH dependences for Ki, as well as for the visible absorption spectra of their E.I complexes in the case of the cobalt-substituted enzyme. From the geometry of the enzymically preferred isomer, it may be concluded that the mechanism of peptide scission by the enzyme entails addition of a nucleophile to the si face of the bound-substrate prochiral carboxamide linkage. New interpretational constraints on the mode of action of the enzyme are thereby imposed. 相似文献
18.
Mallari JP Choy CJ Hu Y Martinez AR Hosaka M Toriyabe Y Maung J Blecha JE Pavkovic SF Berkman CE 《Bioorganic & medicinal chemistry》2004,12(22):6011-6020
A series of alkyl and aryl phosphonyl, thiophosphonyl, and dithiophosphonyl derivatives of (S)- and (R)-glutamic acid were prepared and examined for inhibitory potency against glutamate carboxypeptidase (carboxypeptidase G). The acquisition of the phosphonamidodithioic acids and the individual phosphonamidothioic acid diastereomers was achieved through a common phosphonamidothiolate precursor, which also allowed for the chromatographic resolution of the chiral phosphorus center of the phosphonamidothioic acids. The most potent inhibitor of the series was the n-butylphosphonamidate derivative of the natural isomer of glutamic acid. Although each diastereomeric pair of three phosphonamidothionates exhibited stereoselective inhibition consistent with the configuration of the chiral phosphorus center, this effect was generally not remarkable. More important, was the effect of carbon stereochemistry upon glutamate carboxypeptidase inhibition as exemplified by a limited series of enantiomeric pairs of phosphonamidate and phosphonamidodithionate derivatives of glutamic acid. The phosphonamidate analogs derived from the unnatural stereoisomer of glutamic acid were devoid of inhibitory potency in contrast to their enantiomers. Surprisingly, the phosphonamidodithionates derived from the unnatural stereoisomer of glutamic acid demonstrated greater inhibitory potency than their naturally-derived antipodes. 相似文献
19.
Increasing evidence indicates that oxidative modification of low-density lipoprotein (LDL) is an important determinant in atherogenesis, and following menopause, the incidence of coronary heart disease is as prevalent in women as it is in men. Estrogen has been demonstrated to inhibit the susceptibility of LDL to be oxidized, and more recently the use of phytoestrogens has been considered for estrogen replacement therapy. In this study the antioxidant activity of the three major phytoestrogens: genistein, daidzein, and equol were measured in terms of LDL oxidative susceptibility. Increasing levels of genistein, daidzein, and equol inhibited LDL oxidation, and this inhibitory effect was further enhanced in the presence of ascorbic acid. The synergism exhibited by these compounds is of clinical importance to phytoestrogen therapy since the efficacy of phytoestrogens as effective antioxidants is evident at concentration well within the range found in the plasma of subjects consuming soy products. However, this synergism, combined with the low reactivity of the phytoestrogens with peroxyl radicals, suggests that an antioxidant mechanism other then free radical scavenging reactions account for the phytoestrogen antioxidant effect. A structural basis for inhibition of LDL oxidation involving interaction of the phytoestrogens with apoB-100 is postulated. 相似文献
20.
Podsiadlo P Komiyama T Fuller RS Blum O 《The Journal of biological chemistry》2004,279(35):36219-36227
Furin, a human subtilisin-related proprotein convertase (SPC), is emerging as an important pharmaceutical target because it processes vital proteins of many aggressive pathogens. Furin inhibitors reported as yet are peptide derivatives and proteins, with the exception of andrographolides, which are natural compounds. Here we report that the small and highly stable compounds M(chelate)Cl(2) (M is copper or zinc) inhibit furin and Kex2, with Cu(TTP)Cl(2) and Zn(TTP)Cl(2) as the most efficient inhibitors. (TTP is 4'-[p-tolyl]-2,2 ':6',2"-terpyridine.) Inhibition is irreversible, competitive with substrate, and affected by substituents on the chelate. The free chelates are not inhibitors. Solvated Zn(2+) is less potent than its complexes. This is true also for copper and Kex2. However, solvated Cu(2+) (k(on) of 25,000 +/- 2,500 s(-1)) is more potent than Cu(TTP)Cl(2) (k(on) = 140 +/- 13 s(-1) and allows recovery of furin activity prior to a second inhibition phase. A mechanism that involves coordination to the catalytic histidine is proposed for all inhibitors. Target specificity is indicated by the fact that these metal chelate inhibitors are much less potent toward Kex2, the yeast homologue of furin. For example, k(on) with Zn(TTP)Cl(2) is 120 +/- 20 s(-1) for furin, but only 1.2 +/- 0.1 s(-1) for Kex2. 相似文献