首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in X-Pro-Gly sequences. The reaction requires Fe2+, 2-oxoglutarate, O2, and ascorbate and involves an oxidative decarboxylation of 2-oxoglutarate. Ascorbate is not consumed during most catalytic cycles, but the enzyme also catalyzes decarboxylation of 2-oxoglutarate without subsequent hydroxylation, and ascorbate is required as a specific alternative oxygen acceptor in such uncoupled reaction cycles. A number of compounds inhibit prolyl 4-hydroxylase competitively with respect to some of its cosubstrates or the peptide substrate, and recently many suicide inactivators have also been described. Such inhibitors and inactivators are of considerable interest, because the prolyl 4-hydroxylase reaction would seem a particularly suitable target for chemical regulation of the excessive collagen formation found in patients with various fibrotic diseases. The active prolyl 4-hydroxylase is an alpha 2 beta 2 tetramer, consisting of two different types of inactive monomer and probably containing two catalytic sites per tetramer. The large catalytic site may be cooperatively built up of both the alpha and beta subunits, but the alpha subunit appears to contribute the major part. The beta subunit has been found to be identical to the enzyme protein disulfide isomerase and a major cellular thyroid hormone-binding protein and shows partial homology with a phosphoinositide-specific phospholipase C, thioredoxins, and the estrogen-binding domain of the estrogen receptor. The COOH-terminus of this beta subunit has the amino acid sequence Lys-Asp-Glu-Leu, which was recently suggested to be necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The alpha subunit does not have this COOH-terminal sequence, and thus one function of the beta subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle.  相似文献   

2.
Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation.  相似文献   

3.
The kinetics of the lysyl hydroxylase (peptidyllysine, 2-oxoglutarate:oxygen 5-oxidoreductase, EC 1.14.11.4) reaction were studied using enzyme from chick embryos by varying the concentration of one substrate in the presence of different fixed concentrations of the second substrate, while the concentrations of the other substrates were held constant. Intersecting lines were obtained in double-reciprocal plots for all possible pairs involving Fe2+, alpha-ketoglutarate, O2 and the peptide substrate, whereas parallel lines were obtained for pairs comprising ascorbate and each of the other substrates. The pair composed of Fe2+ and alpha-ketoglutarate gave an asymmetrical initial veolcity pattern, indicating binding of these two reactants in this order, that of Fe2+ being at thermodynamic equilibrium. The initial velocity patterns are identical with those reported for prolyl 4-hydroxylase, and the apparent Km and Kd values calculated from these data are also very similar. The largest difference was fo-nd in Km and Kd for alpha-ketoglutarate, which were about 4 times the corresponding values for prolyl 4-hydroxylase. Ascorbate was found to be a quite specific requirement for lysyl hydroxylase, but the enzyme catalyzed its reaction for a short time at a high rate in the complete absence of this vitamin, suggesting that the reaction with ascorbate does not occur during each catalytic cycle. Lysyl hydroxylase catalyzed an uncoupled decarboxylation of alpha-ketoglutarate in the absence of the peptide substrate, the rate being about 4% of that observed in the presence of a saturating concentration of the peptide substrate. This uncoupled decarboxylation required the same cosubstrates as the complete reaction.  相似文献   

4.
The uncoupling of 2-oxoglutarate decarboxylation from hydroxylation in the reaction catalyzed by thymine 7-hydroxylase (thymine, 2-oxoglutarate:oxygen oxidoreductase (7-hydroxylating), EC 1.14.11.6) in the presence of 5-fluorouracil has been studied. In the complete reaction no external reductant is formally needed. The uncoupled reaction is almost negligible in the absence of ascorbate and the optimal ascorbate concentration is 5-times higher than in the presence of a hydroxylatable substrate. This indicates that ascorbate acts as the external reductant that is formally needed in the catalytic cycle. The complete reaction follows the steady-state kinetics of an ordered ter reactant mechanism where 2-oxoglutarate and thymine have to be bound to the enzyme before oxygen (E. Holme (1975) Biochemistry 14, 4999-5003). The uncoupled reaction follows the same kinetic pattern as the complete reaction, and in accordance with this no decarboxylation of 2-oxoglutarate occurs in the absence of a substrate analogue even at elevated oxygen tension. There is a good agreement between Kia values for 2-oxoglutarate of the two reactions, but there is at least a 6-fold increase in KO2 where a minimum value of 25% O2 in the gas phase was found for the partial reaction. The high KO2 found means that the reaction rate could increase considerably at elevated oxygen tension.  相似文献   

5.
Prolyl 4-hydroxylase catalyzes the formation of 4-hydroxyproline in collagens. The vertebrate enzymes are alpha2beta2 tetramers, whereas the Caenorhabditis elegans enzyme is an alphabeta dimer, the beta subunit being identical to protein-disulfide isomerase (PDI). We report here that the processed Drosophila melanogaster alpha subunit is 516 amino acid residues in length and shows 34 and 35% sequence identities to the two types of human alpha subunit and 31% identity to the C. elegans alpha subunit. Its coexpression in insect cells with the Drosophila PDI polypeptide produced an active enzyme tetramer, and small amounts of a hybrid tetramer were also obtained upon coexpression with human PDI. Four of the five recently identified critical residues at the catalytic site were conserved, but a histidine that probably helps the binding of 2-oxoglutarate to the Fe2+ and its decarboxylation was replaced by arginine 490. The enzyme had a higher Km for 2-oxoglutarate, a lower reaction velocity, and a higher percentage of uncoupled decarboxylation than the human enzymes. The mutation R490H reduced the percentage of uncoupled decarboxylation, whereas R490S increased the Km for 2-oxoglutarate, reduced the reaction velocity, and increased the percentage of uncoupled decarboxylation. The recently identified peptide-binding domain showed a relatively low identity to those from other species, and the Km of the Drosophila enzyme for (Pro-Pro-Gly)10 was higher than that of any other animal prolyl 4-hydroxylase studied. A 1. 9-kilobase mRNA coding for this alpha subunit was present in Drosophila larvae.  相似文献   

6.
The alpha-ketoglutarate dioxygenase, thymine 7-hydroxylase (EC 1.14.11.6), has been purified from cultures of Rhodotorula glutinis grown with thymine as a nitrogen source. The purification scheme developed yielded essentially homogeneous preparations of the 7-hydroxylase and also purified another alpha-ketoglutarate dioxygenase, pyrimidine deoxyribonucleoside 2'-hydroxylase (EC 1.14.11.3). The purity of the 7-hydroxylase was determined with analytical disc gel electrophoresis in which runs were varied with respect to pH, extent of cross-linking, and the presence of sodium dodecyl sulfate-mercaptoethanol. The 7-hydroxylase apparently exists as a monomer since its molecular weight was 42,700 when determined by molecular gel filtration chromatography and was 40,300 when determined by analytical disc gel electrophoresis under denaturing conditions. Gel filtration chromatography under nondenaturing conditions was used to show that the 2'-hydroxylase has a molecular weight of 64,600. The essentially homogeneous preparations of the 7-hydroxylase were shown to catalyze the thymine-, 5-hydroxymethyluracil-, and 5-formyluracil-dependent oxygenations that are coupled to the decarboxylation of alpha-ketoglutarate, as well as a putative uncoupled decarboxylation which is dependent on uracil. Furthermore, these enzyme preparations were used to show that ATP stimulated the 7-hydroxylase reaction in the absence of ascorbate. Even though it is attractive to consider the four pyrimidine-dependent reactions as being catalyzed by the same active site, they were shown to differ markedly in their dependencies on ascorbate or ATP. The effects of ascorbate and ATP on these reactions, and on the 2'-hydroxylase reaction, are discussed in terms of the possible roles of ascorbate and ATP.  相似文献   

7.
The anthracyclines doxorubicin and daunorubicin were found to act as irreversible inhibitors of prolyl 4-hydroxylase. The reaction rate for enzyme from both chick and human origin was first order, the concentration of inhibitor giving 50% inhibition being 60 microM for both compounds after 1 h. The effect was dependent on the presence of iron ions in the reaction mixture. Inactivation could be prevented by addition of high concentrations of ascorbate, but not 2-oxoglutarate, before the inactivation period. The same results were obtained with competitive analogues of these cosubstrates. Lysyl hydroxylase from chick embryos was also susceptible to inactivation. Its activity was decreased by 50% after incubation for 1 h with a 150 microM concentration of the inhibitors. When chick-embryo prolyl 4-hydroxylase was incubated with [14-14C]doxorubicin, both enzyme subunits were radioactively labelled, about 70% of the total radioactivity being found in the alpha-subunit. Since the anthracyclines are known to undergo a redox reaction generating semiquinone radicals with Fe3+ only, the results suggest that the enzyme-bound iron ion is oxidized to a tervalent intermediate in uncoupled reaction cycles. The data also suggest that both enzyme subunits contribute to the catalytic site of prolyl 4-hydroxylase.  相似文献   

8.
Peptides containing the unphysiological amino acid 5-oxaproline (Opr) in the sequence R1-Xaa-Opr-Gly-OR2 were found to inactivate prolyl 4-hydroxylase from chick and human origins. Of the substances investigated, compounds with aromatic substituents R1 and R2 were particularly effective when compared with those with an aliphatic group or without a C-terminal blocking group. Both affinity of the individual peptides for the enzyme and partition ratio contributed to the differences in efficiency. Benzylcarbonyl-Phe-Opr-Gly-benzyl ester was the most effective substance tested, its concentration giving 50% inactivation in 1 h being 0.8 microM. Inactivation was only observed in the presence of 2-oxoglutarate and Fe2+. The Opr peptides enhanced the decarboxylation of 2-oxoglutarate by prolyl 4-hydroxylase, the Vmax values obtained with the individual peptides being positively correlated with their inactivating efficiency. Inactivation was prevented by high concentrations of peptide substrate and ascorbate. Lineweaver-Burk kinetics experiments suggested noncompetitive inhibition with respect to peptide substrate and ascorbate. Lysyl hydroxylase was not affected by Opr peptides in concentrations of up to 1.5 mM in either the presence or absence of prolyl 4-hydroxylase. The results suggest that the oxaproline compounds are specific syncatalytic inactivators of prolyl 4-hydroxylase.  相似文献   

9.
In the absence of a peptidylproline substrate, the oxidative decarboxylation of 2-oxoglutarate by prolyl 4-hydroxylase (prolyl-glycyl-peptide,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) is stoicheiometrically coupled to the oxidation of ascorbate. The Km and Kd for O2 in this partial reaction are 1.5 mM, this value being one order of magnitude higher than the Km and Kd for O2 in the complete reaction in the presence of (Pro-Pro-Gly)5, indicating that in this case O2 can become enzyme-bound predominantly after the interaction of the peptide substrate with the enzyme. The Km values for 2-oxoglutarate in the partial and the complete reactions are the same. In the absence of both a peptide substrate and ascorbate 2 mol CO2 per mol enzyme are produced in the first 1-1.5 min, during which the enzyme becomes inactivated and, as shown earlier (De Jong , L., Albracht , S.P.J. and Kemp, A. (1982) Biochim. Biophys. Acta 704, 326-332) enzyme-bound Fe2+ becomes oxidized to Fe3+. The results are consistent with a mechanism in which a Fe2+O complex is the O-transferring intermediate involved in peptidylproline hydroxylation.  相似文献   

10.
Prolyl 4-hydroxylase was partially purified and characterized from the unicellular green alga, Chlamydomonas reinhardii. This enzyme differed from all the animal and plant prolyl 4-hydroxylases studied so far in that its Mr was only about 40,000 by gel filtration, being thus less than one-sixth of those determined for the vertebrate and higher-plant enzymes. The algal enzyme did not hydroxylate to any significant extent chick-embryo protocollagen or triple-helical (Pro-Pro-Gly)10, whereas a low hydroxylation rate was found with denatured (Pro-Pro-Gly)10. Poly(L-proline), which is an effective inhibitor of the vertebrate enzymes but acts as a substrate for some higher-plant enzymes, was a good substrate. In the absence of poly(L-proline) the enzyme catalysed an uncoupled decarboxylation of 2-oxoglutarate. Studies of the Km values for the co-substrates and cofactors and the specificity of the 2-oxoglutarate requirement, as well as inhibition studies with selected 2-oxoglutarate analogues, suggested that the catalytic site of the algal enzyme is similar to, but not identical with, those of the vertebrate enzymes. The existence of distinct similarities was further demonstrated by an inhibition of the algal enzyme activity with a monoclonal antibody to the beta-subunit of human prolyl 4-hydroxylase. The amount of prolyl 4-hydroxylase activity in the algal cells was not altered by signals which recognize the presence or absence of the cell wall, as determined in studies on experimental cell-wall regeneration and wall-less mutants.  相似文献   

11.
The function of ascorbate with respect to prolyl 4-hydroxylase activity   总被引:2,自引:0,他引:2  
1. Incubation in the presence of 2-oxoglutarate and oxygen inactivates prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate:oxygen oxidoreductase, EC 1.14.11.2), with a t 1/2 of 80 s at 37 degrees C. This inactivation is not affected by the presence or absence of the prolyl peptide substrate or added Fe(II). 2. This inactivation can be prevented by either ascorbate or dithiothreitol. It can be reversed by dithiothreitol but not by ascorbate. 3. Although the iron-containing form of prolyl 4-hydroxylase requires ascorbate for activity, ascorbate is not stoicheiometrically consumed in the reaction catalysed by the enzyme. Ascorbate cannot be replaced by alloxan, lactate, NADH plus phenazine methosulphate, dithiothreitol or L-cysteine. 4. Ascorbate has a double function with respect to prolyl 4-hydroxylase activity. On the one hand, it is required to initiate the reaction when the enzyme has become oxidized during isolation. On the other hand it is required for the protection against inactivation induced by 2-oxoglutarate and oxygen, presumably by preventing S-S bridge formation. The latter function may be of physiological importance.  相似文献   

12.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

13.
A de Waal  L de Jong  A F Hartog  A Kemp 《Biochemistry》1985,24(23):6493-6499
The synthesis is described of the photoaffinity label N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 for the peptide binding site of prolyl 4-hydroxylase. The photoaffinity label is a good substrate and is capable of light-induced inactivation of prolyl 4-hydroxylase activity. Inactivation depends on the concentration of photoaffinity label and is prevented by competition with excess (Pro-Pro-Gly)5. Two moles of photoaffinity label per mole of enzyme is needed for 100% inactivation of enzymic activity. Oxidative decarboxylation of 2-oxoglutarate measured in the absence of added peptide substrate is not affected by labeling. We conclude that the covalently bound nitreno derivative of N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 acts by preventing the binding of peptide substrate to the catalytic site without interfering with the binding of the other substrates and cofactors 2-oxoglutarate, O2, Fe2+, and ascorbate. Labeling is specific for the alpha subunit of the tetrameric alpha 2 beta 2 enzyme. In addition to two catalytic binding sites that are blocked by the photoaffinity label, the enzyme contains binding subsites for peptide substrates, as judged from the capability of photoinactivated enzyme to bind to a poly(L-proline) affinity column. These binding subsites may account for the rapidly increasing affinity for peptide substrates with increasing chain length.  相似文献   

14.
The formation of 3-hydroxyproline was studied with crude rat kidney cortex extract as a source of enzyme and chick embryo tendon protocollagen and procollagen or cartilage protocollagen as a substrate. Synthesis of 3-hydroxyproline was observed with all these substrates and the formation of 3-hydroxyproline ranged up to seven residues per pro-alpha-chain. The highest rate of 3-hydroxylation took place at 20 degrees C and the reaction required Fe2+, O2,2-oxoglutarate and ascorbate. The formation of 3-hydroxyproline was affected by chain length and the conformation of the substrate, in that longer polypeptide chains proved better substrates, while the native triple-helical conformation of protocollagen or procollagen completely prevented the reaction. Formation of 3-hydroxyproline with tendon procollagen as a substrate was not inhibited by antiserum to prolyl 4-hydroxylase or by poly(L-proline) when these substances were used in concentrations which clearly inhibited 4-hydroxyproline formation with tendon protocollagen as a substrate. Furthermore, pure prolyl 4-hydroxylase did not synthesize any 3-hydroxyproline under conditions in which the crude rat kidney cortex enzyme would readily do so. The data thus strongly suggest that prolyl 3-hydroxylase and prolyl 4-hydroxylase are separate enzymes.  相似文献   

15.
Prolyl 3-hydroxylase was purified up to about 5000-fold from an (NH4)2SO4 fraction of chick-embryo extract by a procedure consisting of affinity chromatography on denatured collagen linked to agarose, elution with ethylene glycol and gel filtration. The molecular weight of the purified enzyme is about 160000 by gel filtration The enzyme is probably a glycoprotein, since (a) its activity is inhibited by concanavalin A, and (b) the enzyme is bound to columns of this lectin coupled to agarose and can be eluted with a buffer containing methyl alpha-D-mannoside. The Km values for Fe2+, 2-oxoglutarate, O2 and ascorbate in the prolyl 3-hydroxylase reaction were found to be very similar to those previously reported for these co-substrates in the prolyl 4-hydroxylase and lysyl hydroxylase reactions.  相似文献   

16.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

17.
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.  相似文献   

18.
Prolyl 4-hydroxylase (EC 1.14.11.2) is an essential enzyme in the post-translational modification of collagen. Inhibitors of this enzyme are of potential interest for the treatment of diseases involving excessive deposition of collagen. We have found that anthraquinones with at least two hydroxy groups ortho to each other are potent inhibitors of this enzyme. Kinetic studies revealed that 2,7,8-trihydroxyanthraquinone (THA) competitively inhibited the co-substrate, 2-oxoglutarate, but was non-competitive with regard to ascorbate and was tentatively considered to be uncompetitive with regard to protocollagen. The inhibition by THA was greatly enhanced in the absence of added Fe2+ and was partially reversed by the addition of concentrations of Fe2+ in excess of the optimum for the enzymic reaction. Binding studies indicated that THA is an effective chelating agent for Fe2+. Several non-quinoidal compounds bearing the catechol moiety also inhibited the enzyme. The results suggest that THA inhibited prolyl 4-hydroxylase by binding to the enzyme at the site for 2-oxoglutarate possibly involving the Fe2+ atom, rather than by complexing with Fe2+ in free solution. The inhibition of prolyl 4-hydroxylase by THA exhibited strong positive co-operativity and may involve three distinct but non-independent binding sites.  相似文献   

19.
Highly purified preparations of thymine 7-hydroxylase from Neurospora crassa catalyzed the decarboxylation of alpha-ketoglutarate but yielded no hydroxylated product when uracil was substituted for thymine in the standard incubation mixture. Although the uracil-dependent decarboxylation was much slower than the coupled reaction, both reactions were similar with respect to the requirement for molecular oxygen, the stoichiometric formation of succinate, and the stimulations effected by Fe2+, ascorbate, and catalase. That the same enzyme catalyzed both reactions was indicated by the parallel loss of the uracil- and thymine-dependent activities upon heat denaturation, their copurification, and the lower level of both activities in a mutant strain deficient in the 7-hydroxylase. These data are consonant with molecular oxygen initially attacking alpha-ketoglutarate in the thymine 7-hydroxylase reaction.  相似文献   

20.
From the structure-activity relationships of known competitive inhibitors, coumalic acid (2-oxo-1,2H-pyran-5-carboxylic acid) was deduced to be a potential syncatalytic inhibitor for chick-embryo prolyl 4-hydroxylase. The compound caused time-dependent inactivation, the reaction rate being first-order. The inactivation constant was 0.094 min-1, the Ki 17 mM and the bimolecular rate constant 0.09 M-1 X S-1. Human prolyl 4-hydroxylase and chick embryo lysyl hydroxylase were also inactivated, though to a lesser extent. Inactivation could be prevented by adding high concentrations of 2-oxoglutarate or its competitive analogues to the reaction mixture. In Lineweaver-Burk kinetics, coumalic acid displayed S-parabolic competitive inhibition with respect to 2-oxoglutarate. The inactivation reaction had cofactor requirements similar to those for the decarboxylation of 2-oxoglutarate. Enzymic activity was partially preserved in the absence of iron, but the rescue was incomplete, owing to decreased stability of the enzyme under this condition. Coumalic acid also decreased the electrophoretic mobility of the alpha-subunit, but the beta-subunit was not affected. Prolonged incubation of coumalic acid above pH 6.8 led to loss of its inactivating potency, owing to hydrolysis. It is concluded that the inactivation of prolyl 4-hydroxylase by coumalic acid is due to a syncatalytic mechanism. The data also suggest that the 2-oxoglutarate-binding site of the enzyme is located within the alpha-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号