首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Small Ruminant Research》2007,72(1-3):255-263
A genomic screen for quantitative trait loci (QTL) affecting conformation traits was performed by genotyping 288 Angora goats offspring from 8 half-sub families with 76 microsatellite markers. The following traits were recorded: weaning weight (WW, Kg); stature (S, cm); chest depth (CD, cm); shoulder width (SW, cm); rump length (RL, cm); rump width (RW, cm); head length (HL, cm); head width (HW, cm); shin circumference (SC, cm); chest circumference (CC, cm) and body length (BL, cm). Data were analyzed using the QTL Express program. A total of 5 QTL were detected in five chromosomes with chromosome wide significance level. For the 11 analysed traits the results were: evidence of two possible QTL for HL were found in chromosomes 1 and 4, a putative QTL for trait CD was found in chromosome 2, evidence for BL was found in chromosome 8 and a possible QTL was found for trait CC in chromosome 9. The results reported here show the existence of chromosomal regions in Angora goats involved in conformation traits and represent the first in depth search in some specific-genome sections in order to identify and characterize the genetic variability involved in these traits.  相似文献   

2.
Genome scans for quantitative trait loci (QTL) in farm animals have concentrated on primary production and health traits, and information on QTL for other important traits is rare. We performed a whole genome scan in a granddaughter design to detect QTL affecting body conformation and behavior in dairy cattle. The analysis included 16 paternal half-sib families of the Holstein breed with 872 sons and 264 genetic markers. The markers were distributed across all 29 autosomes and the pseudoautosomal region of the sex chromosomes with average intervals of 13.9 cM and covering an estimated 3155.5 cM. All families were analyzed jointly for 22 traits using multimarker regression and significance thresholds determined empirically by permutation. QTL that exceeded the experiment-wise significance threshold (5% level) were detected on chromosome 6 for foot angle, teat placement, and udder depth, and on chromosome 29 for temperament. QTL approaching experiment-wise significance (10% level) were located on chromosome 6 for general quality of feet and legs and general quality of udder, on chromosome 13 for teat length, on chromosome 23 for general quality of feet and legs, and on chromosome 29 for milking speed. An additional 51 QTL significant at the 5% chromosome-wise level were distributed over 21 chromosomes. This study provides the first evidence for QTL involved in behavior of dairy cattle and identifies QTL for udder conformation on chromosome 6 that could form the basis of recently reported QTL for clinical mastitis.  相似文献   

3.
Huang Y  Haley CS  Hu S  Hao J  Wu C  Li N 《Animal genetics》2007,38(5):525-526
Quantitative trait loci (QTL) for body weights and conformation traits were detected in Beijing ducks. Traits included body weights (BW) at hatching and at 1-7 weeks of age; lengths of the body (BL), keel bone (KBL), shank (SL) and neck (NL) at 7 weeks of age; width of breast (BTW) at 7 weeks; and girths of shank (SG) and breast (BG) at 7 weeks. Using a half-sib analysis with a multiple-QTL model, linkage between the phenotypic traits and 95 microsatellite markers was studied. Six genome-wide suggestive QTL for three body weights and two conformation traits were identified in CAU1, CAU2, CAU6 and CAU12. Chromosome-wide significant QTL influencing one body weight trait and one conformation trait were located in CAU4 and CAU10 respectively. Twelve chromosome-wide suggestive QTL for six body weight traits and four conformation traits were found in seven linkage groups (CAU1, CAU2, CAU3, CAU4, CAU6, CAU10 and CAU12). In addition, the QTL in CAU6 at 21 and 73 cM jointly affected SG and explained 10.6% of the phenotypic variation. This study provides the first evidence for QTL involved in body weights and conformation traits in ducks, and will stimulate further investigations into the genetic architecture of these traits in this species.  相似文献   

4.
A novel and robust method for the fine-scale mapping of genes affecting complex traits, which combines linkage and linkage-disequilibrium information, is proposed. Linkage information refers to recombinations within the marker-genotyped generations and linkage disequilibrium to historical recombinations before genotyping started. The identity-by-descent (IBD) probabilities at the quantitative trait locus (QTL) between first generation haplotypes were obtained from the similarity of the marker alleles surrounding the QTL, whereas IBD probabilities at the QTL between later generation haplotypes were obtained by using the markers to trace the inheritance of the QTL. The variance explained by the QTL is estimated by residual maximum likelihood using the correlation structure defined by the IBD probabilities. Unlinked background genes were accounted for by fitting a polygenic variance component. The method was used to fine map a QTL for twinning rate in cattle, previously mapped on chromosome 5 by linkage analysis. The data consisted of large half-sib families, but the method could also handle more complex pedigrees. The likelihood of the putative QTL was very small along most of the chromosome, except for a sharp likelihood peak in the ninth marker bracket, which positioned the QTL within a region <1 cM in the middle part of bovine chromosome 5. The method was expected to be robust against multiple genes affecting the trait, multiple mutations at the QTL, and relatively low marker density.  相似文献   

5.
Interval mapping was conducted for ovulation rate quantitative trait loci (QTL) using data from two related families from the United States Department of Agriculture, US Meat Animal Research Center twinning cattle herd. Both families are extended, three generation pedigrees from which records of sons, daughters and granddaughters were analysed. Both a method of analysis and results from that analysis are reported herein. Results from one of the two families (839802) were previously reported, but reanalysis here including the second, related family (839803) and a revised statistical model lessens support for the previously reported QTL. Results from interval mapping provided evidence for QTL in regions corresponding to those previously suggested for chromosomes 7 (chromosome-wise P < 0.05) and 19 (chromosome-wise P < 0.01) in the 839802 family, although statistical significance was reduced. In contrast to the previous report, evidence for a chromosome 5 QTL in the same family was greatly reduced while support for a QTL on chromosome 10 increased (chromosome-wise P < 0.01). Analysis of data from the related 839803 family failed to replicate evidence of QTL observed on either chromosome 7 or chromosome 19 in the 839802 family.  相似文献   

6.
Pulmonary hypertension syndrome (PHS), also referred to as ascites syndrome, is a growth-related disorder of chickens frequently observed in fast-growing broilers with insufficient pulmonary vascular capacity at low temperature and/or at high altitude. A cross between two genetically different broiler dam lines that originated from the White Plymouth Rock breed was used to produce a three-generation population. This population was used for the detection and localization of quantitative trait loci (QTL) affecting PHS-related traits. Ten full-sib families consisting of 456 G2 birds were typed with 420 microsatellite markers covering 24 autosomal chromosomes. Phenotypic observations were collected on 4202 G3 birds and a full-sib across family regression interval mapping approach was used to identify QTL. There was statistical evidence for QTL on chicken chromosome 2 (GGA2), GGA4 and GGA6. Suggestive QTL were found on chromosomes 5, 8, 10, 27 and 28. The most significant QTL were located on GGA2 for right and total ventricular weight as percentage of body weight (%RV and %TV respectively). A related trait, the ratio of right ventricular weight as percentage to total ventricular weight (RATIO), reached the suggestive threshold on this chromosome. All three QTL effects identified on GGA2 had their maximum test statistic in the region flanked by markers MCW0185 and MCW0245 (335-421 cM).  相似文献   

7.
Quantitative trait loci (QTLs) associated with grain weight, grain width, kernel hardness and malting quality were mapped in a doubled haploid population derived from two elite Australian malting barley varieties, Navigator and Admiral. A total of 30 QTLs for grain weight, grain width and kernel hardness were identified in three environments, and 63 QTLs were identified for ten malting quality traits in two environments. Three malting quality traits, namely β-amylase, diastatic power and apparent attenuation limit, were mainly controlled by a QTL linked to the Bmy1 gene at the distal end of chromosome 4H encoding a β-amylase enzyme. Six other malting quality traits, namely α-amylase, soluble protein, Kolbach index, free amino-acid nitrogen, wort β-glucan and viscosity, had coincident QTL clustered on chromosomes 1HS, 4HS, 7HS and 7HL, which demonstrated the interdependence of these traits. There was a strong association between these malt quality QTL clusters on chromosomes 1HS and 7HL and the major QTL for kernel hardness, suggesting that the use of this trait to enable early selection for malting quality in breeding programs would be feasible. In contrast, the majority of QTLs for hot-water extract were not coincident with those identified for other malt quality traits, which suggested differences in the mechanism controlling this trait. Novel QTLs have been identified for kernel hardness on chromosomes 2HL and 7HL, hot-water extract on 7HL and wort β-glucan on 6HL, and the resulting markers may be useful for marker-assisted selection in breeding programs.  相似文献   

8.
Data from an F 2 cross between breeds of livestock are typically analysed by least squares line-cross or half-sib models to detect quantitative trait loci (QTL) that differ between or segregate within breeds. These models can also be combined to increase power to detect QTL, while maintaining the computational efficiency of least squares. Tests between models allow QTL to be characterized into those that are fixed (LC QTL), or segregating at similar (HS QTL) or different (CB QTL) frequencies in parental breeds. To evaluate power of the combined model, data wih various differences in QTL allele frequencies (FD) between parental breeds were simulated. Use of all models increased power to detect QTL. The line-cross model was the most powerful model to detect QTL for FD>0.6. The combined and half-sib models had similar power for FD<0.4. The proportion of detected QTL declared as LC QTL decreased with FD. The opposite was observed for HS QTL. The proportion of CB QTL decreased as FD deviated from 0.5. Accuracy of map position tended to be greatest for CB QTL. Models were applied to a cross of Berkshire and Yorkshire pig breeds and revealed 160 (40) QTL at the 5% chromosome (genome)-wise level for the 39 growth, carcass composition and quality traits, of which 72, 54, and 34 were declared as LC, HS and CB QTL. Fourteen CB QTL were detected only by the combined model. Thus, the combined model can increase power to detect QTL and mapping accuracy and enable characterization of QTL that segregate within breeds.  相似文献   

9.
Body weight and abdominal fat traits in meat-type chickens are complex and economically important factors. Our objective was to identify quantitative trait loci (QTL) responsible for body weight and abdominal fat traits in broiler chickens. The Northeast Agricultural University Resource Population (NEAURP) is a cross between broiler sires and Baier layer dams. We measured body weight and abdominal fat traits in the F(2) population. A total of 362 F(2) individuals derived from four F(1) families and their parents and F(0) birds were genotyped using 29 fluorescent microsatellite markers located on chromosomes 3, 5 and 7. Linkage maps for the three chromosomes were constructed and interval mapping was performed to identify putative QTLs. Nine QTL for body weight were identified at the 5% genome-wide level, while 15 QTL were identified at the 5% chromosome-wide level. Phenotypic variance explained by these QTL varied from 2.95 to 6.03%. In particular, a QTL region spanning 31 cM, associated with body weight at 1 to 12 weeks of age and carcass weight at 12 weeks of age, was first identified on chromosome 5. Three QTLs for the abdominal fat traits were identified at the 5% chromosome-wide level. These QTLs explained 3.42 to 3.59% of the phenotypic variance. This information will help direct prospective fine mapping studies and can facilitate the identification of underlying genes and causal mutations for body weight and abdominal fat traits.  相似文献   

10.
Fusarium ear rot caused by Fusarium verticillioides is a prevalent disease in maize which can severely reduce grain yields and quality. Identification of stable quantitative trait loci (QTL) for resistance to Fusarium ear rot is a basic prerequisite for understanding the genetic mechanism of resistance and for the use of marker-assisted selection. In this study, two hundred and ten F 2:3 families were developed from a cross between resistant inbred line BT-1 and susceptible inbred line Xi502, and were genotyped with 178 simple sequence repeat markers. The resistance of each line was evaluated in two environments by artificial inoculation using the nail-punch method. The resistance QTL were detected using the composite interval mapping method. Three QTL were detected on chromosomes 4, 5 and 10. Of them, the QTL on chromosome 4 (bin 4.05/06) had the largest resistance to Fusarium ear rot, and could explain 17.95?% of the phenotypic variation. For further verification of the QTL effect, we developed near-isogenic lines (NILs) carrying the QTL region on chromosome 4 using parental line Xi502 as the recurrent parent. In the NIL background, this QTL can increase the resistance by 33.7?C35.2?% if the resistance region is homozygous, and by 17.8?C26.5?% if the resistance region contains the heterozygous allele. The stable and significant resistance effect of the QTL on chromosome 4 lays the foundation for further marker-assisted selection and map-based cloning in maize.  相似文献   

11.
To dissect age-dependent quantitative trait loci (QTL) associated with growth and to examine changes in QTL effects over time, the Gompertz growth model was fitted to longitudinal live weight data on 788 Scottish Blackface lambs from nine half-sib families. QTL were mapped for model parameters and weekly live weights and growth rates using microsatellite markers on chromosomes 1, 2, 3, 5, 14, 18, 20 and 21. QTL significance (using α = 0.05 chromosome-wide significance thresholds, unless otherwise stated) varied with age, and those for growth rate occurred earlier than equivalent QTL for live weight. A chromosome 20 QTL for growth rate was significant from 4 to 9 weeks (maximum significance at 6 weeks) and for maximum growth rate. For live weight, this QTL was significant from 8 to 16 weeks (maximum significance at 12 weeks). A nominally significant chromosome 14 QTL was detected for growth rates from birth to week 2 in the same families and location as an 8-week weight QTL. In addition, at the same position on chromosome 14, a QTL was significant for growth rate for 17–28 weeks (maximum significance at 24 weeks). A chromosome 3 QTL was significant for weights at early ages (birth to week 4) and a growth rate QTL on chromosome 18 was significant from 8 to 12 weeks. Fitting growth curves allowed the combination of information from multiple measurements into a few biologically meaningful variables, and the detection of growth QTL that were not observed from analyses of raw weight data. These QTL describe distinct parts of an animal's growth curve trajectory, possibly enabling manipulation of this trajectory.  相似文献   

12.
Gilthead sea bream (Sparus aurata L.) is an important marine fish in Mediterranean aquaculture. Sex determination by age and/or body weight is a critical life‐history trait, the genetic basis for which is largely unknown in this sequential hermaphrodite species. Herein, we performed a partial genome scan to map quantitative trait loci (QTL) affecting body weight and sex using 74 informative microsatellite markers from 10 paternal half‐sib families to construct nine linkage groups (LG). In total, four growth‐related QTL (two chromosome‐wide and two genome‐wide) and six QTL related to sex determination (three pairs in three different LGs) were detected (two chromosome‐wide and one genome‐wide). The proportion of phenotypic variation explained by the body‐weight QTL ranged from 9.3% to 17.2%, showing their potential for use in marker‐assisted selection. The results obtained offer solid ground to investigate the structure and function of the genomic regions involved in the mechanisms of sex reversal.  相似文献   

13.
Quantitative trait loci (QTL) affecting health and milk production traits were studied in seven large half-sib US Holstein families by using the granddaughter design. Genotyping for 16 markers was completed and marker allele differences within and pooled-across families were analysed. Potential QTL were identified for somatic cell score (SCS), fat yield, fat percentage, protein yield and protein percentage. Three markers (BM203, BM4505 and BM2078) were associated with significant effects for different traits and, after further analysis, may be useful in marker-assisted selection in specific families. Comparisons between these data and previously identified QTL support the location of a QTL for milk yield and protein yield on chromosome 21.  相似文献   

14.
Fourteen Brazilian Gir sire families with 657 daughters were analyzed for quantitative trait loci (QTL) on chromosome 6 affecting lactose and total solids. Cows and sires were genotyped with 27 microsatellites with a mean spacing between markers of 4.9 cM. We used a 1% chromosome-wide threshold for QTL qualification. A QTL for lactose yield was found close to marker MNB66 in three families. A QTL for total solid yield was identified close to marker BMS2508 in three families. A QTL for lactose percentage, close to marker DIK1182, was identified in two families. A QTL for total solid percentage, close to marker MNB208, was identified in four families. These QTLs could be used for selection of animals in dairy production systems.  相似文献   

15.
Egg production and egg quality are complex sex-limited traits that may benefit from the implementation of marker-assisted selection. The primary objective of the current study was to identify quantitative trait loci (QTL) associated with egg traits, egg production, and body weight in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508 hens over seven hatches. Phenotypes for 29 traits (weekly body weight from hatch to 6 weeks, egg traits including egg, albumen, yolk, and shell weight, shell thickness, shell puncture score, percentage of shell, and egg shell colour at 35 and 55 weeks of age, as well as egg production between 16 and 55 weeks of age) were measured in hens of the resource population. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify putative QTL. Eleven QTL tests representing two regions on chromosomes 2 and 4 surpassed the 5% genome-wise significance threshold. These QTL influenced egg colour, egg and albumen weight, percent shell, body weight, and egg production. The chromosome 4 QTL region is consistent with multiple QTL studies that define chromosome 4 as a critical region significantly associated with a variety of traits across multiple resource populations. An additional 64 QTL tests surpassed the 5% chromosome-wise significance threshold.  相似文献   

16.
A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084 . This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9.  相似文献   

17.
A joint analysis of five paternal half-sib Holstein families that were part of two different granddaughter designs (ADR- or Inra-design) was carried out for five milk production traits and somatic cell score in order to conduct a QTL confirmation study and to increase the experimental power. Data were exchanged in a coded and standardised form. The combined data set (JOINT-design) consisted of on average 231 sires per grandsire. Genetic maps were calculated for 133 markers distributed over nine chromosomes. QTL analyses were performed separately for each design and each trait. The results revealed QTL for milk production on chromosome 14, for milk yield on chromosome 5, and for fat content on chromosome 19 in both the ADR- and the Inra-design (confirmed within this study). Some QTL could only be mapped in either the ADR- or in the Inra-design (not confirmed within this study). Additional QTL previously undetected in the single designs were mapped in the JOINT-design for fat yield (chromosome 19 and 26), protein yield (chromosome 26), protein content (chromosome 5), and somatic cell score (chromosome 2 and 19) with genomewide significance. This study demonstrated the potential benefits of a combined analysis of data from different granddaughter designs.  相似文献   

18.
Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines.  相似文献   

19.
Genetic determinants of obesity-related lipid traits   总被引:1,自引:0,他引:1  
In our ongoing effort to identify genes influencing the biological pathways that underlie the metabolic disturbances associated with obesity, we performed genome-wide scanning in 2,209 individuals distributed over 507 Caucasian families to localize quantitative trait loci (QTLs), which affect variation of plasma lipids. Pedigree-based analysis using a quantitative trait variance component linkage method that localized a QTL on chromosome 7q35-q36, which linked to variation in levels of plasma triglyceride [TG, logarithm of odds (LOD) score = 3.7] and was suggestive of linkage to LDL-cholesterol (LDL-C, LOD = 2.2). Covariates of the TG linkage included waist circumference, fasting insulin, and insulin:glucose, but not body mass index or hip circumference. Plasma HDL-cholesterol (HDL-C) levels were suggestively linked to a second QTL on chromosome 12p12.3 (LOD = 2.6). Five other QTLs with lower LOD scores were identified for plasma levels of LDL-C, HDL-C, and total cholesterol. These newly identified loci likely harbor genetic elements that influence traits underlying lipid adversities associated with obesity.  相似文献   

20.
Quantitative trait loci (QTL) influencing body weight were mapped by linkage analysis in crosses between a high body weight selected line (DU6) and a control line (DUKs). The two mouse lines differ in body weight by 106% and in abdominal fat weight by 100% at 42 days. They were generated from the same base population and maintained as outbred colonies. Determination of line-specific allele frequencies at microsatellite markers spanning the genome indicated significant changes between the lines on 15 autosomes and the X chromosome. To confirm these effects, a QTL analysis was performed using structured F2 pedigrees derived from crosses of a single male from DU6 with a female from DUKs. QTL significant at the genome-wide level were mapped for body weight on chromosome 11; for abdominal fat weight on chromosomes 4, 11, and 13; for abdominal fat percentage on chromosomes 3 and 4; and for the weights of liver on chromosomes 4 and 11, of kidney on chromosomes 2 and 9, and of spleen on chromosome 11. The strong effect on body weight of the QTL on chromosome 11 was confirmed in three independent pedigrees. The effect was additive and independent of sex, accounting for 21-35% of the phenotypic variance of body weight within the corresponding F2 populations. The test for multiple QTL on chromosome 11 with combined data from all pedigrees indicated the segregation of two loci separated by 36 cM influencing body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号