首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In the 1950s many thousands of people living in rural villages on the Techa River received protracted internal and external exposures to ionizing radiation from the release of radioactive material from the Mayak plutonium production complex. The Extended Techa River Cohort includes 29,873 people born before 1950 who lived near the river sometime between 1950 and 1960. Vital status and cause of death are known for most cohort members. Individualized dose estimates have been computed using the Techa River Dosimetry System 2000. The analyses provide strong evidence of long-term carcinogenic effects of protracted low-dose-rate exposures; however, the risk estimates must be interpreted with caution because of uncertainties in the dose estimates. We provide preliminary radiation risk estimates for cancer mortality based on 1,842 solid cancer deaths (excluding bone cancer) and 61 deaths from leukemia. The excess relative risk per gray for solid cancer is 0.92 (95% CI 0.2; 1.7), while those for leukemia, including and excluding chronic lymphocytic leukemia, are 4.2 (CI 95% 1.2; 13) and 6.5 (CI 95% 1.8; 24), respectively. It is estimated that about 2.5% of the solid cancer deaths and 63% of the leukemia deaths are associated with the radiation exposure.  相似文献   

2.
Studies of radiation-associated risks among workers chronically exposed to low doses of radiation are important, both to estimate risks directly and to assess the adequacy of extrapolations of risk estimates from high-dose studies. This paper presents results based on a cohort of 45,468 nuclear power industry workers from the Canadian National Dose Registry monitored for more than 1 year for chronic low-dose whole-body ionizing radiation exposures sometime between 1957 and 1994 (mean duration of monitoring = 7.4 years, mean cumulative equivalent dose = 13.5 mSv). The excess relative risks for leukemia [excluding chronic lymphocytic leukemia (CLL)] and for all solid cancers were 52.5 [95% confidence interval (CI): 0.205, 291] and 2.80 (95% CI: -0.038, 7.13) per sievert, respectively, both associations having P values close to 0.05. Relative risks by dose categories increased monotonically for leukemia excluding CLL but were less consistent for all solid cancers combined. Although the point estimates are higher than those found in other studies of whole-body irradiation, the difference could well be due to chance. Further follow-up of this cohort or the combination of results from multiple worker studies will produce more stable estimates and thus complement the risk estimates from higher-dose studies.  相似文献   

3.
Little is known about long-term cancer risks following in utero radiation exposure. We evaluated the association between in utero radiation exposure and risk of solid cancer and leukemia mortality among 8,000 offspring, born from 1948-1988, of female workers at the Mayak Nuclear Facility in Ozyorsk, Russia. Mother's cumulative gamma radiation uterine dose during pregnancy served as a surrogate for fetal dose. We used Poisson regression methods to estimate relative risks (RRs) and 95% confidence intervals (CIs) of solid cancer and leukemia mortality associated with in utero radiation exposure and to quantify excess relative risks (ERRs) as a function of dose. Using currently available dosimetry information, 3,226 (40%) offspring were exposed in utero (mean dose = 54.5 mGy). Based on 75 deaths from solid cancers (28 exposed) and 12 (6 exposed) deaths from leukemia, in utero exposure status was not significantly associated with solid cancer: RR = 0.94, 95% CI 0.58 to 1.49; ERR/Gy = -0.1 (95% CI < -0.1 to 4.1), or leukemia mortality; RR = 1.65, 95% CI 0.52 to 5.27; ERR/Gy = -0.8 (95% CI < -0.8 to 46.9). These initial results provide no evidence that low-dose gamma in utero radiation exposure increases solid cancer or leukemia mortality risk, but the data are not inconsistent with such an increase. As the offspring cohort is relatively young, subsequent analyses based on larger case numbers are expected to provide more precise estimates of adult cancer mortality risk following in utero exposure to ionizing radiation.  相似文献   

4.
Possible health effects of low and protracted doses of ionizing radiation are relevant for persons who are exposed to an occupational context like nuclear industry workers. A historical cohort study was therefore conducted to examine mortality risks following occupational radiation exposure among 4,844 German nuclear power plant workers. This cohort included workers from ten nuclear power plants with an observational period from 1991 until 1997. The results of an enlarged cohort with 8,972 workers from all 17 nuclear power plants in West Germany are now available. During the extended follow-up period from 1991 to 2008, a total of 310 deaths among men were observed. The standardized mortality ratio (SMR) from all causes of deaths was estimated at 0.50 [95 % confidence interval (CI) 0.45–0.56]. A total of 126 deaths due to cancer occurred (SMR = 0.65; 95 % CI 0.51–0.82) and seven deaths due to leukemia (SMR = 1.23; 95 % CI 0.42–2.84). Overall, a reduced mortality compared to the general population of West Germany was observed indicating a healthy worker effect. In the dose–response analysis, no statistically significant risk due to ionizing radiation was seen. The hazard ratio (HR/mSv) for leukemia excluding chronic lymphocytic leukemia was estimated at 1.004 (95 % CI 0.997–1.011). In conclusion, the cohort is small and made up of young workers, most of whom were still employed at the end of the observational period in 2008. Results of the external analysis are difficult to interpret as influenced by a healthy worker effect. In the internal analysis, no excess of risk due to radiation was detected.  相似文献   

5.
An increased risk of cardiovascular diseases after exposure to low doses of ionizing radiation has been suggested among the atomic bomb survivors. Few and inconclusive results on this issue are available from miner studies. A positive correlation between coronary heart disease mortality and radon exposure has been reported in the Newfoundland fluorspar miners study, yet low statistical power due to small sample size was of concern. To get further insight into this controversial issue, data from the German uranium miners cohort study were used, which is by far the largest miner study up to date. The cohort includes 59,001 male subjects who were employed for at least six months between 1946 and 1989 at the former Wismut uranium company in Eastern Germany. Exposure to radon, long-lived radionuclides and external gamma radiation was estimated by using a detailed job-exposure matrix. About 16,598 cohort members were deceased until 31 December 1998, including 5,417 deaths from cardiovascular diseases. Linear Poisson regression models were used to estimate the excess relative risk (ERR) per unit of cumulative radiation exposure after adjusting for attained age and calendar period. No trend in risk of circulatory diseases with increasing cumulative exposure to either radon [ERR per 100 working level month: 0.0006; 95% confidence limit (CI): −0.004 to 0.006], external gamma radiation (ERR per Sv: −0.26, 95% CI: −0.6 to 0.05) or long-lived radionuclides (ERR per 100 kBqh/m3: −0.2, 95% CI: −0.5 to 0.06), respectively, was observed. This was also true for the sub-group heart disease and stroke. Our findings do not support an association between cardiovascular disease mortality and exposure to radiation among miners, yet low doses and uncontrolled confounding hamper interpretation.  相似文献   

6.
In contrast to other types of leukemia, chronic lymphocytic leukemia (CLL) has long been regarded as non-radiogenic, i.e. not caused by ionizing radiation. However, the justification for this view has been challenged. We therefore report on the relationship between CLL mortality and external ionizing radiation dose within the 15-country nuclear workers cohort study. The analyses included, in seven countries with CLL deaths, a total of 295,963 workers with more than 4.5 million person-years of follow-up and an average cumulative bone marrow dose of 15 mSv; there were 65 CLL deaths in this cohort. The relative risk (RR) at an occupational dose of 100 mSv compared to 0 mSv was 0.84 (95% CI 0.39, 1.48) under the assumption of a 10-year exposure lag. Analyses of longer lag periods showed little variation in the RR, but they included very small numbers of cases with relatively high doses. In conclusion, the largest nuclear workers cohort study to date finds little evidence for an association between low doses of external ionizing radiation and CLL mortality. This study had little power due to low doses, short follow-up periods, and uncertainties in CLL ascertainment from death certificates; an extended follow-up of the cohorts is merited and would ideally include incident cancer cases.  相似文献   

7.
Cosmic radiation is an occupational risk factor for commercial aircrews. In this large European cohort study (ESCAPE) its association with cancer mortality was investigated on the basis of individual effective dose estimates for 19,184 male pilots. Mean annual doses were in the range of 2–5 mSv and cumulative lifetime doses did not exceed 80 mSv. All-cause and all-cancer mortality was low for all exposure categories. A significant negative risk trend for all-cause mortality was seen with increasing dose. Neither external and internal comparisons nor nested case-control analyses showed any substantially increased risks for cancer mortality due to ionizing radiation. However, the number of deaths for specific types of cancer was low and the confidence intervals of the risk estimates were rather wide. Difficulties in interpreting mortality risk estimates for time-dependent exposures are discussed.Abbreviations CI confidence interval - CLL chronic lymphatic leukemia - RRC radiation-related cancers - NRRC non-radiation-related cancers - RR relative risk - SMR standardized mortality ratio  相似文献   

8.
Leukemia following radiotherapy for uterine bleeding   总被引:1,自引:0,他引:1  
Mortality due to leukemia among 4483 women treated with radiation to control uterine bleeding between 1925 and 1965 was twice as high as expected based on U.S. population rates (standardized mortality ratio (SMR) = 2.0; 95% confidence interval (CI): 1.4 to 2.8). Women were followed for an average of 26.4 years. Relative risk was highest 2 to 5 years after treatment (SMR = 8.1) and among women over 55 years at irradiation (SMR = 5.8). The usual method of treatment was intrauterine radium. Average radiation dose to active bone marrow was estimated on the basis of original radiotherapy records (median, 53 cGy). A linear dose-response model provided an adequate fit to the data. The average excess relative risk was 1.9% per cGy (95% CI: 0.8 to 3.2), and the average absolute risk was 2.6 excess leukemia deaths per million women per year per cGy (95% CI: 0.9 to 4.8). Chronic myeloid leukemia predominated during the first 15 years following exposure, whereas acute leukemias and chronic lymphatic leukemia were most common thereafter. The radiation doses experienced during treatment of benign gynecologic disease appear to result in greater leukemia risk per cGy average marrow dose than the considerably higher doses used to treat malignant disease, perhaps because of a decreased likelihood of killing potentially leukemic cells.  相似文献   

9.
The paper presents estimates for the latent period of the induction of radiogenic solid cancers among Chernobyl emergency workers (males) living in six central regions of Russia. The analysis is based on medical and dosimetry data gathered by the National Radiation and Epidemiological Registry over the time period from 1986 to 2005. The cohort includes 59,770 persons who stayed in the exposure zone (30-km zone around the Chernobyl nuclear power plant) in 1986–1987. There were 2,718 cases of solid tumors identified during the follow-up time in this cohort. The mean radiation dose in the cohort is 0.13 Gy. The radiation risk and latent period were estimated using the method of maximum likelihood. The excess relative risk per unit dose was found to be 0.96 (95% confidence interval (CI): 0.3–1.7) and the minimum latent period for induction of solid tumors is 4.0 years (95% CI: 3.3–4.9).  相似文献   

10.
It is currently unclear whether exposure of the heart and vascular system, at lifetime accumulated dose levels relevant to the general public (<500 mGy), is associated with an increased risk of cardiovascular disease. Therefore, data from the German WISMUT cohort of uranium miners were investigated for evidence of a relationship between external gamma radiation and death from cardiovascular diseases. The cohort comprises 58,982 former employees of the Wismut company. There were 9,039 recorded deaths from cardiovascular diseases during the follow-up period from 1946 to 2008. Exposures to external gamma radiation were estimated using a detailed job-exposure matrix. The exposures were based on expert ratings for the period 1946–1954 and measurements thereafter. The excess relative risk (ERR) per unit of cumulative gamma dose was obtained with internal Poisson regression using a linear ERR model with baseline stratification by age and calendar year. The mean cumulative gamma dose was 47 mSv for exposed miners (86 %), with a maximum of 909 mSv. No evidence for an increase in risk with increasing cumulative dose was found for mortality from all cardiovascular diseases (ERR/Sv = ?0.13; 95 % confidence interval (CI): ?0.38; 0.12) and ischemic heart diseases (n = 4,613; ERR/Sv = ?0.03; 95 % CI: ?0.38, 0.32). However, a statistically insignificant increase (n = 2,073; ERR/Sv = 0.44; 95 % CI: ?0.16, 1.04) for mortality from cerebrovascular diseases was observed. Data on smoking, diabetes, and overweight are available for subgroups of the cohort, indicating no major correlation with cumulative gamma radiation. Confounding by these factors or other risk factors, however, cannot be excluded. In conclusion, the results provide weak evidence for an increased risk of death due to gamma radiation only for cerebrovascular diseases.  相似文献   

11.
Dynamics of the mortality and the mortality radiation risks among male emergency workers of 1986-1987 years of entrance to the Chernobyl zone is analyzed. The average dose of external gamma-exposure for this cohort equals 128 mGy. The size of the cohort at the beginning of the follow-up in 1992 was 47820 persons. For the follow-up period 1992-2006 statistically significant radiation risks of death rates have been estimated: for the mortality from all causes, the excess relative risk per Gy (ERR/Gy) equals 0.42 with 95% confidence interval (95% CI) (0.14-0.72); for the mortality from solid cancers ERR/Gy = 0.74, 95% CI (0.03-1.76); and for the mortality from the circulatory system diseases ERR/Gy = 1.01, 95% CI (0.51-1.57). Based on these estimates the risk groups were ranked among all Russian emergency workers (160 thousand persons): the group of the potential radiation risk with doses more than 150 mGy (33488 persons) and the group of the high radiation risk with doses more than 240 mGy (6054 persons).  相似文献   

12.
At present, direct data on risk from protracted or fractionated radiation exposure at low dose rates have been limited largely to studies of populations exposed to low cumulative doses with resulting low statistical power. We evaluated the cancer risks associated with protracted exposure to external whole-body gamma radiation at high cumulative doses (the average dose is 0.8 Gy and the highest doses exceed 10 Gy) in Russian nuclear workers. Cancer deaths in a cohort of about 21,500 nuclear workers who began working at the Mayak complex between 1948 and 1972 were ascertained from death certificates and autopsy reports with follow-up through December 1997. Excess relative risk models were used to estimate solid cancer and leukemia risks associated with external gamma-radiation dose with adjustment for effects of plutonium exposures. Both solid cancer and leukemia death rates increased significantly with increasing gamma-ray dose (P < 0.001). Under a linear dose-response model, the excess relative risk for lung, liver and skeletal cancers as a group (668 deaths) adjusted for plutonium exposure is 0.30 per gray (P < 0.001) and 0.08 per gray (P < 0.001) for all other solid cancers (1062 deaths). The solid cancer dose-response functions appear to be nonlinear, with the excess risk estimates at doses of less than 3 Gy being about twice those predicted by the linear model. Plutonium exposure was associated with increased risks both for lung, liver and skeletal cancers (the sites of primary plutonium deposition) and for other solid cancers as a group. A significant dose response, with no indication of plutonium exposure effects, was found for leukemia. Excess risks for leukemia exhibited a significant dependence on the time since the dose was received. For doses received within 3 to 5 years of death the excess relative risk per gray was estimated to be about 7 (P < 0.001), but this risk was only 0.45 (P = 0.02) for doses received 5 to 45 years prior to death. External gamma-ray exposures significantly increased risks of both solid cancers and leukemia in this large cohort of men and women with occupational radiation exposures. Risks at doses of less than 1 Gy may be slightly lower than those seen for doses arising from acute exposures in the atomic bomb survivors. As dose estimates for the Mayak workers are improved, it should be possible to obtain more precise estimates of solid cancer and leukemia risks from protracted external radiation exposure in this cohort.  相似文献   

13.
《Cancer epidemiology》2014,38(4):339-345
The association between alcohol and leukemia risk has been addressed in several studies in the past two decades, but results have been inconsistent. Therefore, we conducted a systematic review and meta-analysis to quantify the dose–risk relation. Through the literature search up to August 2013, we identified 18 studies, 10 case-control and 8 cohorts, carried out in a total of 7142 leukemia cases. We derived pooled meta-analytic estimates using random-effects models, taking into account the correlation between estimates, and we performed a dose–risk analysis using a class of nonlinear random-effects meta-regression models. Stratified analyses were carried out on leukemia subtypes and groups, in order to identify possible etiologic differences. Compared with nondrinkers, the relative risks (RRs) for all leukemia were 0.94 [95% confidence interval (CI), 0.85–1.03], 0.90 (95% CI, 0.80–1.01) and 0.91 (95% CI, 0.81–1.02) for any, light (≤1 drink/day) and moderate to heavy (>1 drink/day) alcohol drinking, respectively. The summary RRs for any alcohol drinking were 1.47 (95% CI, 0.47–4.62) for acute lymphoblastic leukemia, 0.94 (95% CI 0.77–1.15) for chronic lymphocytic leukemia, 1.02 (95% CI, 0.86–1.21) for acute myeloid leukemia and 0.93 (95% CI 0.75–1.14) for chronic myeloid leukemia. The subgroup analysis on geographical area for all leukemia combined showed RRs of 0.84 (95% CI, 0.76–0.93), 0.92 (95% CI, 0.83–1.01) and 1.32 (95% CI, 1.02–1.70) for studies conducted in America, Europe and Asia, respectively. We did not find an increased risk of leukemia among alcohol drinkers. If any, a modest favorable effect emerged for light alcohol drinking, with a model-based risk reduction of approximately 10% in regular drinkers.  相似文献   

14.
A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose.  相似文献   

15.
Results have been inconsistent between studies of lung cancer risk and ionizing radiation exposures among workers at the Portsmouth Naval Shipyard (PNS). The purpose of this nested case-control study was to evaluate the relationship between lung cancer risk and external ionizing radiation exposure while adjusting for potential confounders that included gender, radiation monitoring status, smoking habit surrogates (socioeconomic status and birth cohort), welding fumes and asbestos. By incidence density sampling, we age-matched 3,291 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992 with 1,097 lung cancer deaths from among the same cohort. Analyses using conditional logistic regression were conducted in various model forms: log-linear (main), linear excess relative risk (ERR), and categorical. Lung cancer risk was positively associated with occupational dose (OR = 1.02 at 10 mSv; 95% CI 0.99- 1.04) but flattened after the inclusion of work-related medical X-ray doses (OR = 1.00; 95% CI 0.98-1.03) in multivariate analyses. Similar risk estimates were observed in the linear ERR model at 10 mSv of cumulative exposure with a 15-year lag.  相似文献   

16.
The aim of the present study was to analyze the mortality from circulatory diseases for about 30,000 members of the Techa River cohort over the period 1950–2003, and to investigate how these rates depend on radiation doses. This population received both external and internal exposures from 90Sr, 89Sr, 137Cs, and other uranium fission products as a result of waterborne releases from the Mayak nuclear facility in the Southern Urals region of the Russian Federation. The analysis included individualized estimates of the total (external plus internal) absorbed dose in muscle calculated based on the Techa River Dosimetry System 2009. The cohort-average dose to muscle tissue was 35 mGy, and the maximum dose was 510 mGy. Between 1950 and 2003, 7,595 deaths from circulatory diseases were registered among cohort members with 901,563 person years at risk. Mortality rates in the cohort were analyzed using a simple parametric excess relative risk (ERR) model. For all circulatory diseases, the estimated excess relative risk per 100 mGy with a 15-year lag period was 3.6 % with a 95 % confidence interval of 0.2–7.5 %, and for ischemic heart disease it was 5.6 % with a 95 % confidence interval of 0.1–11.9 %. A linear ERR model provided the best fit. Analyses with a lag period shorter than 15 years from the beginning of exposure did not reveal any significant risk of mortality from either all circulatory diseases or ischemic heart disease. There was no evidence of an increased mortality risk from cerebrovascular disease (p > 0.5). These results should be regarded as preliminary, since they will be updated after adjustment for smoking and alcohol consumption.  相似文献   

17.
This continues the series of periodic general reports on cancer mortality in the cohort of A-bomb survivors followed by the Radiation Effects Research Foundation. The follow-up is extended by the 5 years 1986-1990, and analysis includes an additional 10,500 survivors with recently estimated radiation doses. Together these extensions add about 550,000 person-years of follow-up. The cohort analyzed consists of 86,572 subjects, of which about 60% have dose estimates of at least 0.005 Sv. During 1950-1990 there have been 3086 and 4741 cancer deaths for the less than and greater than 0.005 Sv groups, respectively. It is estimated that among these there have been approximately 420 excess cancer deaths during 1950-1990, of which about 85 were due to leukemia. For cancers other than leukemia (solid cancers), about 25% of the excess deaths in 1950-1990 occurred during the last 5 years; for those exposed as children this figure is nearly 50%. For leukemia only about 3% of the excess deaths in 1950-1990 occurred in the last 5 years. Whereas most of the excess for leukemia occurred in the first 15 years after exposure, for solid cancers the pattern of excess risk is apparently more like a life-long elevation of the natural age-specific cancer risk. Taking advantage of the lengthening follow-up, increased attention is given to clarifying temporal patterns of the excess cancer risk. Emphasis is placed on describing these patterns in terms of absolute excess risk, as well as relative risk. For example: (a) although it is becoming clearer that the excess relative risk for those exposed as children has declined over the follow-up, the excess absolute risk has increased rapidly with time; and (b) although the excess relative risk at a given age depends substantially on sex and age at exposure, the age-specific excess absolute risk depends little on these factors. The primary estimates of excess risk are now given as specific to sex and age at exposure, and these include projections of dose-specific lifetime risks for this cohort. The excess lifetime risk per sievert for solid cancers for those exposed at age 30 is estimated at 0.10 and 0.14 for males and females, respectively. Those exposed at age 50 have about one-third these risks. Projection of lifetime risks for those exposed at age 10 is more uncertain. Under a reasonable set of assumptions, estimates for this group range from about 1.0-1.8 times the estimates for those exposed at age 30. The excess life-time risk for leukemia at 1 Sv for those exposed at either 10 or 30 years is estimated as about 0.015 and 0.008 for males and females, respectively. Those exposed at age 50 have about two-thirds that risk. Excess risks for solid cancer appear quite linear up to about 3 Sv, but for leukemia apparent nonlinearity in dose results in risks at 0.1 Sv estimated at about 1/20 of those for 1.0 Sv. Site-specific risk estimates are given, but it is urged that great care be taken in interpreting these, because most of their variation can be explained simply by imprecision in the estimates.  相似文献   

18.
BackgroundBirth defects have been consistently associated with elevated childhood cancer risks; however, the relationship between congenital heart disease (CHD) and childhood cancer remains conflicting. Considering the increasing patient population with CHD after improvements in their life expectancies, insights into this relationship are particularly compelling. Thus, we aimed to determine the relationship between CHD and cancer in Swedish children.Methods and findingsAll individuals registered in the Swedish Medical Birth Register (MBR) between 1973 and 2014 were included in this population–based cohort study (n = 4,178,722). Individuals with CHD (n = 66,892) were identified from the MBR and National Patient Register, whereas cancer diagnoses were retrieved from the Swedish Cancer Register. The relationship between CHD and childhood cancer (<20 years at diagnosis) was evaluated using Cox proportional hazards regression models. We observed increased risks of cancer overall, leukemia, lymphoma, and hepatoblastoma in children with CHD, but after adjustment for Down syndrome, only the increased lymphoma (hazard ratio (HR) = 1.64, 95% confidence interval (CI) 1.11 to 2.44) and hepatoblastoma (HR = 3.94, 95% CI 1.83 to 8.47) risk remained. However, when restricting to CHD diagnoses from the MBR only, i.e., those diagnosed around birth, the risk for childhood cancer overall (HR = 1.45, 95% CI 1.23 to 1.71) and leukemia (HR = 1.41, 95% CI 1.08 to 1.84) was more pronounced, even after controlling for Down syndrome. Finally, a substantially elevated lymphoma risk (HR = 8.13, 95% CI 4.06 to 16.30) was observed in children with complex CHD. Limitations of the study include the National Patient Register not being nationwide until 1987, in addition to the rareness of the conditions under study providing limited power for analyses on the rarer cancer subtypes.ConclusionsWe found associations between CHD and childhood lymphomas and hepatoblastomas not explained by a diagnosis of Down syndrome. Stronger associations were observed in complex CHD.

Christina-Evmorfia Kampitsi and colleagues investigate the relationship between congenital heart disease and cancer in Swedish children.  相似文献   

19.
This report updates the data on noncancer mortality for 86,572 atomic bomb survivors with dose estimates in the Radiation Effects Research Foundation's Life Span Study cohort. The primary analyses are based on more than 27,000 noncancer disease deaths that occurred in the cohort between October 1, 1950, and December 31, 1990, 30% more than in the previous report. The present analyses strengthen earlier findings of a statistically significant increase in noncancer disease death rates with radiation dose. Increasing trends are observed for diseases of the circulatory, digestive and respiratory systems. Rates for those exposed to 1 Sv are elevated about 10%, a relative increase that is considerably smaller than that for cancer. However, estimates of the number of radiation-related noncancer deaths in the cohort to date (140 to 280) are 50 to 100% of the number for solid cancer. The data do not yet clarify the shape of the dose response. There is no significant evidence against linearity, but the data are statistically consistent with curvilinear dose-response functions that posit essentially zero risk for doses below 0.5 Sv. Similarly, while the data are consistent with substantial variation in the excess relative risk with age at exposure or attained age, there is no statistically significant dependence on these factors. In view of the small relative risks and the lack of understanding of biological mechanisms, we emphasize consideration of whether the findings could be explained by misclassification, confounding or selection effects. Based on available data, we conclude that such factors are unlikely to fully explain the observed dose response. A significant dose response is also seen for deaths from blood diseases with an excess relative risk that is several times greater than that seen for solid cancer. Particular attention is paid to the possibility that this apparent effect is a consequence of the attribution of leukemia or other cancer deaths to noncancer blood diseases. We find that misclassification does not explain this excess risk. As in earlier reports, suicide rates tend to decrease with increasing dose.  相似文献   

20.
This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950-2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 10(4) person-years per Gy) continues to increase throughout life with a linear dose-response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号