首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report the influence of acetylsalicylic acid on oxylipin migration in Cryptococcus neoformans var. neoformans UOFS Y-1378, previously isolated from human bone lesion. Transmission electron microscopy suggests that osmiophilic material originates in mitochondria and is deposited inside the yeast cell wall, from which it is excreted into the environment, along capsule protuberances, or through capsule detachments. Previous studies using immunogold labeling indicate that these osmiophilic layers contain 3-hydroxy oxylipins. In this study, the addition of acetylsalicylic acid (an inhibitor of mitochondrial function) in increasing amounts to the cells abrogated the migration of osmiophilic material, as well as capsule detachment from cell walls, and hence, oxylipin excretion. Consequently, we hypothesize that 3-hydroxy oxylipins are produced in mitochondria, probably via incomplete beta-oxidation or fatty acid synthesis, from which they are deposited inside the cell wall and excreted through tubular protuberances attached to the surrounding capsules and (or) through detachment of these oxylipin-containing capsules.  相似文献   

2.
Interesting distribution patterns of acetylsalicylic acid (ASA, aspirin) sensitive 3-hydroxy (OH) oxylipins were previously reported in some representatives of the yeast genus Eremothecium—an important group of plant pathogens. Using immunofluorescence microscopy and 3-OH oxylipin specific antibodies in this study, we were able to map the presence of these compounds also in other Eremothecium species. In Eremothecium cymbalariae, these oxylipins were found to cover mostly the spiky tips of narrowly triangular ascospores while in Eremothecium gossypii, oxylipins covered the whole spindle-shaped ascospore with terminal appendages. The presence of these oxylipins was confirmed by chemical analysis. When ASA, a 3-OH oxylipin inhibitor, was added to these yeasts in increasing concentrations, the sexual stage was found to be the most sensitive. Our results suggest that 3-OH oxylipins, produced by mitochondria through incomplete β-oxidation, are associated with the development of the sexual stages in both yeasts. Strikingly, preliminary studies on yeast growth suggest that yeasts, characterized by mainly an aerobic respiration rather than a fermentative pathway, are more sensitive to ASA than yeasts characterized by both pathways. These data further support the role of mitochondria in sexual as well as asexual reproduction of yeasts and its role to serve as a target for ASA antifungal action.  相似文献   

3.
Immunofluorescence microscopy was used to assess members of the yeast genus Dipodascus for the presence of 3-hydroxy oxylipins. Fluorescence was associated with the aggregating ascospores in all species tested, thus suggesting the association of 3-hydroxy oxylipins with these cells, especially the surrounding slime sheaths. An ultrastructural study of the ascospores revealed sheaths with indentations, probably caused by the close packing of the ascospores to form clusters. In addition, an increase in the neutral and glycolipid fractions as well as a decrease in the phospholipid fraction during ascosporogenesis in D. ambrosiae was found. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Using immunofluorescence confocal laser scanning microscopy, immunogold transmission electron microscopy and gas chromatography--mass spectrometry, we demonstrated the presence of 3-hydroxy fatty acids in Cryptococcus neoformans. Our results suggest that these oxylipins accumulate in capsules where they are released as hydrophobic droplets through tubular protuberances into the surrounding medium.  相似文献   

5.
As previously found in various members of the Mucorales, 3-hydroxy oxylipins in Mucor genevensis are associated with the sporangia, i.e. mainly the columella structure and between aggregating sporangiospores. To determine if this phenomenon is also true in distantly related members, the mucoralean fungus Pilobolus was examined. This fungus is characterized by relatively large sub sporangial-columella structures which actively eject sporangia in a sticky liquid for attachment onto herbage surrounding its growth medium – in this case horse dung. Strikingly, this fungus produced a novel oxylipin i.e. a 3-hydroxy monounsaturated fatty acid, possibly a nonenoic acid, which is mainly associated with the sub sporangial-columella structure and aggregating sporangiospores. The specificity of the antibody against 3-hydroxy oxylipins used in immunofluorescence mapping of the mucoralean fungi, was further confirmed in the yeast, Saccharomycopsis malanga which produces 3-hydroxy palmitate in crystal form. These crystals occur between aggregating yeast cells. On the basis of the available data, we hypothesize that 3-hydroxy oxylipins probably function as adhesives, attaching fungal cells to each other or to other surfaces through entropic based hydrophobic forces and/or hydrogen bonds.  相似文献   

6.
Eremothecium coryli is known to produce intriguing spindle-shaped ascospores with long and thin whip-like appendages. Here, ultra structural studies using scanning electron microscopy, indicate that these appendages serve to coil around themselves and around ascospores causing spore aggregation. Furthermore, using immunofluorescence confocal laser scanning microscopy it was found that hydrophobic 3-hydroxy oxylipins cover the surfaces of these ascospores. Using gas chromatography–mass spectrometry, only the oxylipin 3-hydroxy 9:1 (a monounsaturated fatty acid containing a hydroxyl group on carbon 3) could be identified. Sequential digital imaging suggests that oxylipin-coated spindle-shaped ascospores are released from enclosed asci probably by protruding through an already disintegrating ascus wall.  相似文献   

7.
The distribution of 3-hydroxy oxylipins in Saturnispora saitoi was mapped using immunofluorescence microscopy. Fluorescence was observed on aggregating ascospores, indicating the presence of 3-hydroxy oxylipins on the surface or between ascospores. The oxylipin was identified as 3-hydroxy 9:1 using gas chromatography mass spectrometry. Furthermore, ultrastructural studies using scanning and transmission electron microscopy on ascospores revealed a clear equatorial ledge surrounding oval-shaped ascospores.  相似文献   

8.
9.
The presence of aspirin-sensitive 3-hydroxy fatty acids (i.e. 3-OH oxylipins) in yeasts was first reported in the early 1990s. Since then, these oxidized fatty acids have been found to be widely distributed in yeasts. 3-OH oxylipins may: (1) have potent biological activity in mammalian cells; (2) act as antifungals; and (3) assist during forced spore release from enclosed sexual cells (asci). A link between 3-OH oxylipin production, mitochondria and aspirin sensitivity exists. Research suggests that: (1) 3-OH oxylipins in some yeasts are probably also produced by mitochondria through incomplete beta-oxidation; (2) aspirin inhibits mitochondrial beta-oxidation and 3-OH oxylipin production; (3) yeast sexual stages, which are probably more dependent on mitochondrial activity, are also characterized by higher 3-OH oxylipin levels as compared to asexual stages; (4) yeast sexual developmental stages as well as cell adherence/flocculation are more sensitive to aspirin than corresponding asexual growth stages; and (5) mitochondrion-dependent asexual yeast cells with a strict aerobic metabolism are more sensitive to aspirin than those that can also produce energy through an alternative anaerobic glycolytic fermentative pathway in which mitochondria are not involved. This review interprets a wide network of studies that reveal aspirin to be a novel antifungal.  相似文献   

10.
There is a sufficient body of work documenting the distribution of 3-hydroxy oxylipins in microbes. However, there is limited information on the role of these compounds in microbial pathogenesis. When derived from mammalian cells, these compounds regulate patho-biological processes, thus an understanding of 3-hydroxy oxylipin function and metabolism could prove important in shedding light on how these compounds mediate cellular pathology and physiology. This could present 3-hydroxy oxylipin biosynthetic pathways as targets for drug development. In this minireview, we interrogate the relevant yeast and bacterial 3-hydroxy oxylipin literature in order to appreciate how these compounds may influence the inflammatory response leading to disease development.  相似文献   

11.
When oxylipin and mitochondrion probes, i.e., fluorescing antibodies specific for 3-hydroxy fatty acids (3-OH oxylipins) and rhodamine 123 (Rh123), were added to yeast cells, these probes accumulated mainly in the sexual cells (i.e., both associated with ascospores) and not in the vegetative cells. This suggests increased mitochondrial activity in asci, since 3-OH oxylipins are mitochondrially produced and it is known that Rh123 accumulates selectively in functional mitochondria that maintain a high transmembrane potential (Delta Psi m). This increased activity may be necessary for the production and effective release of the many spores found in single-celled asci. These results may be useful in the rapid identification of asci and in yeast sexual spore mechanics, which may find application in yeast systematics as well as hydro-, aero-, and nano-technologies.  相似文献   

12.
黄曲霉毒素是由黄曲霉菌合成的一类毒性极高、致癌性极强的次生代谢物。一般认为,高油脂含量的作物种子被曲霉属真菌感染后容易产生黄曲霉毒素,但是,脂肪酸的处理实验结果表明不同类型的脂肪酸对曲霉属真菌毒素合成的作用不同,有的促进合成,有的抑制合成。最近研究结果显示所有脂肪酸都促进黄曲霉毒素合成,但是多不饱和脂肪酸在暴露空气之后对毒素合成有抑制作用。这种抑制产毒的作用似乎是由多不饱和脂肪酸氧化所产生的脂氧合物所介导。本文结合我们的研究结果,综合评述了脂肪酸和脂氧合物调控曲霉属真菌菌丝生长、产孢和毒素合成研究的最新进展。  相似文献   

13.
Oxidation products of unsaturated fatty acids, collectively known as oxylipins, function as signaling molecules in plants during development, wounding, and insect and pathogen attack. Certain oxylipins are also known to have direct cytotoxic effects on pathogens. We used inducible expression of bacterial avirulence proteins in planta to study the involvement of oxylipins in race-specific defense against bacterial pathogens. We demonstrate that recognition of the Pseudomonas syringae avirulence protein AvrRpm1 induces 9- and 13-lipoxygenase-dependent oxylipin synthesis in Arabidopsis thaliana. The major oxylipins accumulated were jasmonic acid, 12-oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. The majority of the newly formed oxylipins (>90%) was found to be esterified to glycerolipids, whereby 12-oxo-phytodienoic acid and dinor-oxo-phytodienoic acid were found to be esterified to a novel galactolipid. The structure of the substance was determined as a monogalactosyldiacylglycerol containing two 12-oxo-phytodienoic acids and one dinor-oxo-phytodienoic acid acyl chain and was given the trivial name arabidopside E. This substance accumulated to surprisingly high levels, 7-8% of total lipid content, and was shown to inhibit growth of a bacterial pathogen in vitro. Arabidopside E was formed also after recognition of the avirulence protein AvrRpt2, suggesting that this could be a conserved feature of defense reactions against bacterial pathogens. In conclusion, the data presented suggest a role of enzymatically formed oxylipins, especially the octadecanoids and arabidopside E in race-specific resistance against bacterial pathogens.  相似文献   

14.
Upon cultivation of the yeast Dipodascopsis tothii in its sexual stage, small ascospores are released individually from the ascus tip, which then assemble in sheathed cluster balls. In contrast to Dipodascopsis uninucleata, this yeast produced smooth bean shaped ascospores with sheath-like appendages that assemble in a disordered sheathed ball of ascospores outside the ascus. Strikingly, upon release, the ascus tip contained 3-hydroxy oxylipins, while the released ascospore clusters contained little or no 3-hydroxy oxylipins as indicated by immunofluorescence microscopy. In D. uninucleata, these oxylipins are concentrated on the spore surface and interspore matrix, but not on the ascus tip.  相似文献   

15.
Cellobiose lipids of yeast fungi Cryptococcus humicola and Pseudozyma fusiformata have similar fungicidal activities against different yeast, including pathogenic Cryptococcus and Candida species. Basidiomycetic yeast reveals maximum sensitivity to these preparations; e.g., cells of cryptococcus Filobasidiella neoformans almost completely die after 30-min incubation in a glycolipid solution at a concentration of 0.02 mg/ml. The same effect toward ascomycetous yeast, including pathogenic Candida species, is achieved only at five to eight times higher concentrations of glycolipids. The cellobiose lipid from P. fusiformata, which, unlike glycolipid from Cr. humicola, has hydroxycaproic acid residue as O-subtituent of cellobiose and additional 15-hydroxy group in aglycone, inhibits the growth of the studied mycelial fungi more efficiently than the cellobiose lipid from Cr. humicola.  相似文献   

16.
3-Hydroxy oxylipins were uncovered on ascospores of Eremothecium sinecaudum using immunofluorescence microscopy. This was confirmed by gas chromatography mass spectrometry. These oxylipins were observed only on ascospore parts characterised by nano-scale surface ornamentations simulating a corkscrew as demonstrated by scanning electron microscopy. Conventional ascospore staining further confirms its hydrophobic nature. Using confocal laser scanning microscopy we found that the corkscrew part with spiky tip of needle-shaped ascospores may play a role in rupturing the ascus in order to affect its release. Through oxylipin inhibition studies we hypothesise a possible role for 3-hydroxy oxylipins in facilitating the rupturing process.  相似文献   

17.
Although oxylipins can be synthesized from free fatty acids, recent evidence suggests that oxylipins are components of plastid-localized polar complex lipids in Arabidopsis (Arabidopsis thaliana). Using a combination of electrospray ionization (ESI) collisionally induced dissociation time-of-flight mass spectrometry (MS) to identify acyl chains, ESI triple-quadrupole (Q) MS in the precursor mode to identify the nominal masses of complex polar lipids containing each acyl chain, and ESI Q-time-of-flight MS to confirm the identifications of the complex polar lipid species, 17 species of oxylipin-containing phosphatidylglycerols, monogalactosyldiacylglycerols (MGDG), and digalactosyldiacylglycerols (DGDG) were identified. The oxylipins of these polar complex lipid species include oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), 18-carbon ketol acids, and 16-carbon ketol acids. Using ESI triple-Q MS in the precursor mode, the accumulation of five OPDA- and/or dnOPDA-containing MGDG and two OPDA-containing DGDG species were monitored as a function of time in mechanically wounded leaves. In unwounded leaves, the levels of these oxylipin-containing complex lipid species were low, between 0.001 and 0.023 nmol/mg dry weight. However, within the first 15 min after wounding, the levels of OPDA-dnOPDA MGDG, OPDA-OPDA MGDG, and OPDA-OPDA DGDG, each containing two oxylipin chains, increased 200- to 1,000-fold. In contrast, levels of OPDA-hexadecatrienoic acid MGDG, linolenic acid (18:3)-dnOPDA MGDG, OPDA-18:3 MGDG, and OPDA-18:3 DGDG, each containing a single oxylipin chain, rose 2- to 9-fold. The rapid accumulation of high levels of galactolipid species containing OPDA-OPDA and OPDA-dnOPDA in wounded leaves is consistent with these lipids being the primary products of plastidic oxylipin biosynthesis.  相似文献   

18.
N-Acylethanolamines (NAEs) constitute a new class of plant lipids and are thought to play a role in plant defense strategies against pathogens. In plant defense systems, oxylipins generated by the lipoxygenase pathway are important actors. To date, it is not known whether plants also use endogeneous oxylipins derived from NAEs in their defense reactions. We tested whether members of the NAE class can be converted by enzymes constituting this pathway, such as (soybean) lipoxygenase-1, (alfalfa) hydroperoxide lyase and (flax seed) allene oxide synthase. We found that both alpha-N-linolenoylethanolamine and gamma-N-linolenoylethanolamine (18:3), as well as alpha-N-linolenoylamine and gamma-N-linolenoylamine were converted into their (13S)-hydroperoxide derivatives by lipoxygenase. Interestingly, only the hydroperoxides of alpha-N-linolenoyl(ethanol)amines and their linoleic acid analogs (18:2) were suitable substrates for hydroperoxide lyase. Hexanal and (3Z)-hexenal were identified as volatile products of the 18:2 and 18:3 fatty acid (ethanol)amides, respectively. 12-Oxo-N-(9Z)-dodecenoyl(ethanol)amine was the nonvolatile hydrolysis product. Kinetic studies with lipoxygenase and hydroperoxide lyase revealed that the fatty acid ethanolamides were converted as readily or even better than the corresponding free fatty acids. Allene oxide synthase utilized all substrates, but was most active on (13S)-hydroperoxy-alpha-N-linolenoylethanolamine and the (13S)-hydroperoxide of linoleic acid and its ethanolamine derivative. alpha-Ketols and gamma-ketols were characterized as products. In addition, cyclized products, i.e. 12-oxo-N-phytodienoylamines, derived from (13S)-hydroperoxy-alpha-N-linolenoylamines were found. The results presented here show that, in principle, hydroperoxide NAEs can be formed in plants and subsequently converted into novel phytooxylipins.  相似文献   

19.
The effect of the natural oxylipins 3(R)-hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid (3-HETE) and 18-hydroxy-(9Z,12Z)-octadecadienoic acids (18-HODE) on the growth and hypha aggregation, as well as on some light-depending processes, such as carotenoid biosynthesis, protoperithecia formation (sexual cycle), and conidiation (asexual cycle), of the ascomycete Neurospora crassa was studied. Hypha aggregation and growth slowdown were induced by 3-HETE, 18-HODE, and linoleic acid. At concentrations from 5 to 50 μM, these compounds had no significant effect on the light-induced carotenogenesis. At the same time, these 3-HETE and 18-HODE concentrations, unlike linoleic acid, induced the formation of protoperithecia in the dark. At the concentration of 5 μM, an additive effect of oxylipins and light was revealed. The studied oxylipins had different effects on the asexual reproduction of N. crassa: 3-HETE induced conidiation in the dark, whereas 18-HODE induced conidiation in the light. The possible involvement of oxylipins in the regulation of the processes of sexual and asexual reproduction of N. crassa is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号