首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Mathew  V L Sallee  J Curtis  J Mrotek 《Steroids》1985,46(2-3):697-716
Cholesterol, pregnenolone, progesterone, 11-deoxycorticosterone (11-DOC) and corticosterone were quantitated in subcellular fractions isolated from in vivo adrenocorticotropin (ACTH)-stimulated rat adrenal zona fasciculata/reticularis. Six adrenal subcellular fractions separated by discontinuous sucrose gradient centrifugation (lipid, 0.125 M sucrose, cytosolic, microsomal, mitochondrial and nuclear) were extracted with alkaline ether/ethanol and assayed by high pressure liquid chromatography (HPLC). Lipid fractions contained the major cholesterol stores, while most pregnenolone and progesterone was found in lipid, microsomal and mitochondrial fractions. The 0.125 M sucrose and cytosol fractions together contained approximately 75% of the total 11-DOC and corticosterone. The five steroids were only present in small amounts in organelle fractions containing steroidogenic enzymes. Homogenate and lipid fraction cholesterol decreased between 10 and 15 min and again 30 min after ACTH injection. In the homogenate, lipid, microsomal and mitochondrial fractions, pregnenolone and progesterone were increased after ACTH injection; peak pregnenolone and progesterone concentrations were often measured in adrenal gland sucrose, cytosolic, microsomal and mitochondrial fractions 15 to 20 min after rats were injected with ACTH. Although ACTH increased 11-DOC and corticosterone in all but the mitochondrial and nuclear fractions, the sucrose, cytosolic and microsomal 11-DOC, and cytosolic corticosterone increased most dramatically. In many fractions, peak 11-DOC and corticosterone concentrations were most often observed between the 10 and 15 min periods and again at 30 min.  相似文献   

2.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

3.
On subcellular fractionation, carbonyl reductase (EC 1.1.1.184) activity in guinea pig lung was found in the mitochondrial, microsomal, and cytosolic fractions; the specific activity in the mitochondrial fraction was more than five times higher than those in the microsomal and cytosolic fractions. Further separation of the mitochondrial fraction on a sucrose gradient revealed that about half of the reductase activity is localized in mitochondria and one-third in a peroxidase-rich fraction. Although carbonyl reductase in both the mitochondrial and microsomal fractions was solubilized effectively by mixing with 1% Triton X-100 and 1 M KCl, the enzyme activity in the mitochondrial fraction was more highly enhanced by the solubilization than was that in the microsomal fraction. Carbonyl reductases were purified to homogeneity from the mitochondrial, microsomal, and cytosolic fractions. The three enzymes were almost identical in catalytic, structural, and immunological properties. Carbonyl reductase, synthesized in a rabbit reticulocyte lysate cell-free system, was apparently the same in molecular size as the subunit of the mature enzyme purified from cytosol. These results indicate that the same enzyme species is localized in the three different subcellular compartments of lung.  相似文献   

4.
Rats were given a 0.05% polychlorinated biphenyls (PCB) diet supplemented with adequate nutrients for 10 days and not only PCB-induced lipid peroxidation as measured by thiobarbituric acid (TBA)-reactive substances but also variations of lipid peroxides scavengers in liver and its subcellular fractions (nuclei and cell debris, mitochondrial, microsomal and cytosolic fractions) were investigated. The lipid peroxidation in liver and subcellular fractions in the PCB-treated group increased significantly except in the nuclei and cell debris fraction. The increase in lipid peroxidation in the microsomal fraction appeared to be associated in part with the decrease in vitamin E (alpha-tocopherol) content and induction of drug-metabolizing enzymes. In the cytosolic fraction, the total lipid content increased, glutathione peroxidase (GSHPx) activity decreased and the quantity of free radical-reactive substances suppressing lipid peroxidation was low as measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) value. From these results, the increase in lipid peroxidation in the cytosolic fraction in the PCB-treated group was ascribed to the abundance and availability of oxidizable substrate attended with fatty liver, to the decline in GSHPx activity, and to the insufficiency in antioxygenic activity as observed by the decrease in the DPPH value.  相似文献   

5.
During myocardial ischemia increased levels of lysoglycerophospholipids have been reported which may be deleterious to myocardial function. Phospholipases are presumed to be important in the regulation of this process. To further quantify and characterize the activity of heart phospholipases, we carried out a systematic analysis of phospholipase A activity in rat heart subcellular fractions isolated by the method of Palmer et al. (J. Biol. Chem. 1972. 262: 8731-8739). Neutral phospholipase A was recovered predominately in the cytosolic (soluble) fraction which represented 46% of recovered activity, while the microsomal and subsarcolemmal mitochondrial fractions represented 15% and 12% of the total recovered activity, respectively. Cytosolic phospholipase A differed from the two principal membrane-bound phospholipases A in its pH dependence and apparent Km for substrate. The cytosolic enzyme had a Km (apparent) for dioleoylphosphatidylcholine of 0.07 mM versus 0.28-0.33 mM for the membrane-associated phospholipases A. Acid phospholipase A activity had a subcellular distribution consistent with a lysosomal localization. Lysophospholipase was found principally in the cytosolic, microsomal, and the subsarcolemmal and interfibrillar mitochondrial fractions where it represented 46, 17, 6.3, and 6.9% of the recovered activity, respectively. The positional specificity of the respective phospholipases was assessed. This analysis was complicated by the fact that in heart, lysophospholipase has an observed Vmax 3.6- to 4.5-fold greater than that of phospholipase A in the various subcellular fractions. Equations were derived to obtain corrected values for the activity of phospholipases A1 and A2. Using this method we found that the cytosolic and lysosomal fractions contained phospholipase A1, while the mitochondrial fractions contained primarily phospholipase A2. In heart microsomes, the positional specificity of phospholipase A could not be determined because lysophospholipase activity was very high and lysophosphatidylcholine did not accumulate.  相似文献   

6.
Abstract: The distribution of calretinin, calbindin D28k, and parvalbumin was examined in subcellular fractions prepared from rat cerebellum and analyzed by immunoblot. Calretinin was also quantified by radioimmunoassay. As expected, all three soluble, EF-hand calcium-binding proteins were predominantly localized in the cytosolic fraction. Calretinin and calbindin D28k were also detected in membrane fractions. Calretinin was more abundant in synaptic membrane than in microsomal fractions. The cerebellar microsomal fraction contained the greatest concentration of membrane-associated calbindin D28k. The association of calretinin and calbindin D28k with membrane fractions was decreased in samples prepared or incubated in low calcium. Quantification of calretinin in subcellular fractions of rat cerebellum revealed a greater amount of calretinin in cytosolic fractions prepared or incubated in low calcium and reduced amounts of calretinin in all membrane fractions incubated in low calcium with the exception of the mitochondrial fraction. These results imply that calretinin and calbindin D28k might have physiological target molecules that are associated with, or are components of, brain membranes.  相似文献   

7.
The localization of GTP-binding protein (G-protein) subunits, Go alpha, Gi2 alpha and beta, in subcellular fractions of rat cerebral cortex was determined by means of immunoassays specific for the respective subunits. High concentrations of all three subunits were observed in both crude mitochondrial and microsomal fractions. Muscarinic cholinergic receptors were also densely localized in these fractions. Then the crude mitochondrial and microsomal fractions were subfractionated by sucrose density gradient centrifugation. Each fraction obtained was evaluated morphologically by electron microscopy and biochemically by determination of membrane markers. The crude mitochondrial fraction was subfractionated into myelin, synaptic plasma membrane, and mitochondrial fractions. All the G-protein subunits examined and muscarinic receptors were exclusively localized in the synaptic plasma membrane fraction. Among the submicrosomal fractions, the heavy smooth-surfaced microsomal fraction showed the highest concentrations of all G-protein subunits and receptors, while the rough-surfaced microsomal fraction contained low amounts of them. The heavy smooth-surfaced microsomal fraction also contained high specific activity of (Na(+)-K+)-ATPase, a marker of the plasma membrane. These results indicated that the Go alpha, Gi2 alpha and beta subunits are mainly localized in the plasma membrane in the brain.  相似文献   

8.
Crude subcellular fractions were prepared from adult rat brains by differential centrifugation of brain homogenates. Greater than 98% of the cellular mitochondrial marker enzyme activity sedimented in the heavy and light mitochondrial pellets, and less than 1% of the activity sedimented in microsomal pellets. Lysosomal marker enzyme activities mainly (71-78% of cellular activity) sedimented in the heavy and light mitochondrial pellets. Significant amounts of the lysosomal marker enzyme activity also sedimented in the crude microsomal pellets (9-13% of total) and high-speed supernatants (14-16% of total). The specific activities of microsomal and peroxisomal marker enzyme activities were highest in the crude microsomal pellets. Fractionation of the crude microsomal pellets on Nycodenz gradients resulted in the separation of the bulk of the remaining mitochondrial, lysosomal, and microsomal enzyme activities from peroxisomes. Fatty acyl-CoA synthetase activities separated on Nycodenz gradients as two distinct peaks, and the minor peak of the activities was in the peroxisomal enriched fraction. Fatty acid beta-oxidation activities also separated as two distinct peaks, and the activities were highest in the peroxisomal enriched fractions. Mitochondria were purified from the heavy mitochondrial pellets by Percoll density gradients. Fatty acyl-CoA synthetase and fatty acid beta-oxidation activities were present in both the purified mitochondrial and peroxisomal enriched fractions. Stearoyl-CoA synthetase activities were severalfold greater compared to lignoceroyl-CoA synthetase, and stearic acid beta-oxidation was severalfold greater compared to lignoceric acid beta-oxidation in purified mitochondrial and peroxisomal enriched fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The subcellular distribution of acid (pH 4.0) and neutral (pH 6.5) α-glucosidases was investigated in biopsy specimens of human skeletal muscle obtained from six normal subjects, four adult cases of acid maltase deficiency, and a case of myophosphorylase deficiency. The highest relative specific activity of acid glucosidase, as well as of other acid hydrolases, was observed in the light mitochondrial fraction. Relatively high acid phosphatase activity was also found in the microsomal fraction. In all muscles the highest relative specific activity of neutral glucosidase was in the microsomal fraction. In acid glucosidase deficient muscle no neutral glucosidase could be detected in the light and heavy mitochondrial fractions but in normal and myophosphorylase deficient muscle neutral glucosidase activity was also detectable in these fractions. The final supernatant of all muscles contained neutral glucoamylase activity. The relevance of these data to the pathogenesis of the different forms of type II glycogenosis is considered.  相似文献   

10.
A zinc-deficient diet caused an increase in microsomal membrane phospholipid levels compared to ad libitum controls. Cholesterol levels were found to be decreased 50% compared to either pair-fed or ad libitum controls, resulting in a sharp decline in the cholesterol/phospholipid ratio. No differences were observed in the distribution of phospholipid classes among all three groups, either in mitochondrial or microsomal membrane fractions. Fatty acid analysis of PC and PE revealed a rise in the 18:2 fraction from zinc-deficient mitochondrial and microsomal membrane fractions. Mitochondrial PE and PC from zinc-deficient animals revealed a rise in the 22:6 fatty acid fraction while microsomal PC also revealed a corresponding decrease in 20:4. None of the zinc-deficient preparations differed significantly from either ad libitum or pair-fed controls in the content of long-chain alk-l-enyl ethers. The results of this study point to an effect of a zinc-deficient diet on lipid metabolism in tumor subcellular membranes which may account for the decreased rate of tumor growth observed in zinc-deficient animals.  相似文献   

11.
1. Mitochondrial and microsomal fractions were prepared from rat parotid glands. Both fractions were able to take up (45)Ca. The mitochondrial (45)Ca-uptake system could be driven by ATP (energy-coupled Ca(2+) uptake) or by ADP+succinate (respiration-coupled Ca(2+) uptake). Energy-coupled Ca(2+) uptake was blocked by oligomycin but not by carbonyl cyanide m-chlorophenylhydrazone; respiration-coupled Ca(2+) uptake was blocked by carbonyl cyanide m-chlorophenylhydrazone but not by oligomycin. Microsomal Ca(2+) uptake was dependent on the presence of ATP; the ATP-dependent Ca(2+) uptake was not affected by oligomycin or carbonyl cyanide m-chlorophenylhydrazone. Ca(2+) uptake by both fractions was inhibited by Ni(2+). 2. Incubation of parotid pieces with adrenaline increased the rate of release of amylase and the uptake of (45)Ca. The adrenaline-stimulated release of amylase was not dependent on the presence of extracellular Ca(2+). 3. The effect of adrenaline on the subcellular distribution of (45)Ca in parotid pieces incubated with (45)Ca was studied. In parotid tissue incubated with (45)Ca, both mitochondrial and microsomal fractions contained (45)Ca. Incubation with adrenaline increased the amount of (45)Ca incorporated into the mitochondrial fraction but not the microsomal fraction. In parotid tissue preloaded with (45)Ca subsequent incubation with adrenaline caused a decrease in the amount of (45)Ca found in both the mitochondrial and microsomal fractions. 4. From these data we conclude that the regulation of the cytosolic Ca(2+) concentration in the parotid may involve both mitochondrial and microsomal Ca(2+)-uptake systems. We suggest that the action of adrenaline on the parotid may be to increase the movement of Ca(2+) to the cytosol by increasing the flux of Ca(2+) across mitochondrial, microsomal and plasma membranes.  相似文献   

12.
1. A method for the extraction and purification of cytochrome c from rat liver is described. The method depends on multiple chromatography on Amberlite IRC-50 with elution with ammonium phosphate buffers of differing ionic composition and pH, interspersed with gel filtration with Sephadex G-25. Conditions leading to denaturation are avoided and the product is chromatographically pure. 2. The method may be used for the quantitative analysis of cytochrome c either in unfractionated liver or in subcellular fractions. 3. Two pools of cytochrome c were detected, one extractable at pH4.0 with distilled water and the other extracted from the residues of the first extraction with 0.15m-sodium chloride. 4. For subcellular distribution studies the liver was homogenized in 0.3m-sucrose and a nuclear fraction (washed thoroughly to remove trapped mitochondria), a mitochondrial fraction, a heavy microsomal fraction, a standard microsomal fraction and the cell sap were isolated. The mitochondrial fraction was subfractionated further by density-gradient centrifugation. Each fraction was analysed for protein, RNA, DNA, succinate-neotetrazolium oxidoreductase and glucose 6-phosphatase. 5. A total of 123mug. of cytochrome c was obtained/g. wet wt. of rat liver. 6. Values for the percentage subcellular distribution of cytochrome c are: nuclear fraction, 24.4; mitochondrial fraction, 57.2; heavy microsomal fraction, 5.2; standard microsomal fraction, 10.6; cell sap, 2.7. 7. Three out of the eight mitochondrial subfractions separated by gradient centrifugation contained 76% of the cytochrome c and 85% of the succinate-neotetrazolium oxidoreductase present in the mitochondrial fraction. 8. In unfractionated liver 94% of the cytochrome c was extracted at pH4.0 with water whereas in most of the subcellular fractions the corresponding value was approx. 75-80%.  相似文献   

13.
Binding of [3H]Ro5-4864, a specific ligand for "peripheral type" benzodiazepine receptors, was determined in subcellular fractions of guinea pig lung. Even though the level of binding was predominant in the mitochondrial fraction, nuclear and cytosolic fractions also contained significantly measurable amounts of binding sites. The presence of binding sites in the microsomal fraction and in a fraction intermediate in density between the mitochondria and microsomes depended on which buffer was used to homogenize the tissue. If calcium-containing mannitol buffer was used, binding was negligible in the postmitochondrial organelles. However, in the case of sucrose buffer which did not contain any calcium, the postmitochondrial organelle fractions contained measurable amounts of binding sites. Most probably, these binding sites were of mitochondrial and nuclear origin. Furthermore, binding sites in the mitochondria were associated with the succinic dehydrogenase-enriched mitochondrial inner membrane, but not with the monoamine oxidase- and cholinephosphotransferase-enriched outer mitochondrial membrane. Furthermore, several proteolytic enzymes caused a decrease in binding of the ligand to the mitochondrial membrane only under hypotonic conditions and not under isotonic conditions, suggesting that the location of the receptors is inside the mitochondria.  相似文献   

14.
Paired toad urinary hemibladders were incubated with [35S]methionine in the presence (experimental) or absence (control) of aldosterone. Short-circuit current was used to monitor aldosterone-induced Na+ transport. Protein synthesis in epithelial cell subcellular fractions (cytosolic, microsomal, mitochondrial) was evaluated by gradient polyacrylamide gel electrophoresis and autoradiography. Aldosterone-induced proteins were identified in the cytosolic and microsomal fractions (70 000 and 15 000 daltons, respectively). These results represent the first demonstration of aldosterone-induced proteins in subcellular fractions of epithelial cells derived from single toad urinary hemibladders.  相似文献   

15.
The subcellular distribution of cerebral phosphoproteins   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The subcellular distribution of the phosphoprotein fraction of grey matter from guinea-pig brain has been determined. Phosphoproteins occurred in all fractions of the tissue, the mitochondrial fraction containing 29%, supernatant 26%, microsomal fraction 23% and nuclear fraction 15%. The quantity of phosphoproteins per unit quantity of protein was highest in the microsomal fraction and lowest (by a factor of nearly 50%) in the mitochondrial fraction. 2. Observations are reported on the nature of the nuclear subfraction believed from earlier work to contain a phosphoprotein sensitive to the effects of electrical pulses applied to cerebral slices in vitro. With respect to its content of phosphoprotein, cholesterol, ribonucleic acid and succinate-dehydrogenase activity, the subfraction resembles the nerve-ending fraction of the mitochondrial fraction, from which it appears to be derived by cross-contamination. Electron microscopy tended to confirm this impression. Reasons are adduced for discounting the earlier claim that the sensitive phosphoprotein is contained in a new subcellular structure distinct from nuclei, mitochondria or microsomes.  相似文献   

16.
The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.  相似文献   

17.
The hypothesis whether valproic acid (VPA) and its main microsomal metabolite, Delta(4)-valproic acid, can be activated to the respective CoA esters in the cell cytosol was investigated. The valproyl-CoA formation was measured in different subcellular fractions obtained by differential centrifugation of liver homogenates of rats treated with VPA (studies ex vivo) and digitonin fractionation of rat hepatocytes incubated with VPA and cofactors (studies in vitro). The results show that VPA activation may occur in the cytosol and is not restricted to the mitochondrial matrix as believed until now. Furthermore, the activation of Delta(4)-VPA is demonstrated in vitro. Valproyl-CoA and Delta(4)-valproyl-CoA were detected after in vitro incubations and the former also in the mitochondrial and cytosolic fractions obtained from liver cells of treated rats. The activation to valproyl-CoA was characterized in cytosolic fractions, optimized with respect to time and protein and the kinetic constants (K(m)(app)) were estimated for the reaction substrates. Other medium-chain fatty acids decreased the formation of valproyl-CoA suggesting a competition for both mitochondrial and extra-mitochondrial VPA activating enzymes. The present findings suggest additional mechanisms of mitochondrial dysfunction associated with VPA, and they may contribute to the further understanding of the toxic effects associated with this drug.  相似文献   

18.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

19.
The subcellular distribution of the enzymes involved in the metabolism of norethynodrel (17 alpha-ethynyl-17 beta-hydroxy-estr-5(10)-en-3-one) to the 3alpha and 3beta diols (17 alpha-ethynyl-3alpha (or 3beta-17 beta-dihydroxy-estr-5(10)-ene) and 17 alpha-ethinyl estradiol was studied. The purity of the male rat liver subcellular fractions was evaluated by the use of marker enzymes. Sample sections were viewed by electron microscopy. The data showed that the cytosol fraction contained the highest relative specific activity for the hydroxysteroid dehydrogenases required for the formation of the diols. The cytosol fraction also contained the highest total activity. The enzymes required for the formation of ethinyl estradiol were distributed equally among mitochondrial and microsomal fractions, however, the highest relative specific activity was associated with the heavy microsomal fraction (18,000 g).  相似文献   

20.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号