首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Four detergents have been compared for identification of the Plasmodium knowlesi variant antigen on infected erythrocytes by immunoprecipitation analysis. Erythrocytes infected with late trophozoite and schizont forms of cloned asexual parasites were labeled by lactoperoxidase-catalyzed radioiodination and extracted either with the anionic detergents sodium dodecyl sulfate (SDS) or cholate, the neutral detergent Triton X-100, or the zwitterion 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). After addition of Triton X-100 to SDS and cholate extracts, parallel immunoprecipitations of the four extracts were performed using rhesus monkey antisera of defined agglutinability. Identical results were obtained with clone Pk1(A+), which has 125I-variant antigens of Mr 210,000 and 190,000, and with clone Pk1(B+)1+, which has variant antigens of Mr 200,000-205,000. SDS yielded maximal levels of immunoprecipitated 125I-variant antigens. Variant-specific immunoprecipitation was detected in some experiments with Triton X-100 and cholic acid but with significantly lower recovery than with SDS. CHAPS extraction did not yield the variant antigens on immunoprecipitation. The variant antigens could also be identified in Triton X-100-insoluble material by subsequent extraction with SDS, indicating that failure to recover these proteins in the Triton X-100-soluble fraction is due to failure of this detergent to extract the variant antigens rather than to degradation during extraction. We suggest that the 125I-variant antigens either have a structure that renders them intrinsically insoluble in Triton X-100, cholate, or CHAPS, or that they are associated in some way with host cell membrane components that also resist solubilization by these detergents.  相似文献   

2.
The Triton X-100-insoluble skeleton of baby hamster kidney BHK cells consists of the nucleus, intermediate-size filaments, and actin fibers. By transmission electron microscopy, membrane fragments were found to be associated with these insoluble structures. When radioiodinated or [3H]glucosamine-labeled cells were extracted with 0.5% Triton, most plasma membrane glycoproteins were solubilized except for a glycoprotein with a molecular weight of 85,000 (gp85) that remained associated with the insoluble skeletons. Immunoprecipitation with a specific antiserum indicated that the gp85 is not a proteolytic degradation product of fibronectin, an extracellular matrix glycoprotein insoluble in detergent. A monoclonal antibody of BHK cells specific for gp85 was produced. Immunofluorescence analysis with this monoclonal antibody indicated that gp85 is not associated with the extracellular matrix, but is confined to the cell membrane. Both in fixed and unfixed intact cells, fluorescence was concentrated in dots preferentially aligned in streaks on the cell surface. Gp85 was found to behave as an integral membrane protein interacting with the hydrophobic core of the lipid bilayer since it was extracted from membrane preparations by ionic detergents such as SDS, but not by 0.1 N NaOH (pH 12) in the absence of detergents, a condition known to release peripheral molecules. Association of gp85 with the cell skeleton was unaffected by increasing the Triton concentration up to 5%, but it was affected when actin filaments were dissociated or when a protein-denaturing agent (6 M urea) was used in the presence of Triton, suggesting that protein-protein interactions are involved in the association of gp85 with the cell skeleton. We conclude that gp85 is an integral plasma membrane glycoprotein that might have a role in cell surface-cytoskeleton interaction.  相似文献   

3.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

4.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) clusters at electron-dense knob-like structures on the surface of malaria-infected red blood cells and mediates their adhesion to the vascular endothelium. In parasites lacking knobs, vascular adhesion is less efficient, and infected red cells are not able to immobilize successfully under hemodynamic flow conditions even though PfEMP1 is still present on the exterior of the infected red cell. We examined the interaction between the knob-associated histidine-rich protein (KAHRP), the parasite protein upon which knob formation is dependent, and PfEMP1, and we show evidence of a direct interaction between KAHRP and the cytoplasmic region of PfEMP1 (VARC). We have identified three fragments of KAHRP which bind VARC. Two of these KAHRP fragments (K1A and K2A) interact with VARC with binding affinities (K(D(kin))) of 1 x 10(-7) M and 3.3 x 10(-6) M respectively, values comparable to those reported previously for protein-protein interactions in normal and infected red cells. Further experiments localized the high affinity binding regions of KAHRP to the 63-residue histidine-rich and 70-residue 5' repeats. Deletion of these two regions from the KAHRP fragments abolished their ability to bind to VARC. Identification of the critical domains involved in interaction between KAHRP and PfEMP1 may aid development of new therapies to prevent serious complications of P. falciparum malaria.  相似文献   

5.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents--dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35--were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

6.
The mechanisms of interaction between non-ionic or cationic surfactants with Escherichia coli K-12 cell membranes were studied using an approach based on the registration of changes in the membrane permeability to ethidium bromide, a fluorescent dye for nucleic acids. Triton X-100, a non-ionic detergent, was shown to exert no effect on the permeability of intact cell membranes. Triton X-100 interacted with the bacteria only after treatment with EDTA, a complexing agent for bivalent cations. Cetyltrimethyl ammonium bromide increased the permeability to ethidium bromide and the action of this cationic detergent did not require the pretreatment with the complexing agent. SDS, an anionic detergent, damaged E. coli K-12 and this could be registered by the lowering of intensity of light scattering by the bacterial suspension. The surface charge of E. coli K-12 cells was shown to influence the interaction of ionic detergents with bacterial cell membranes. Its variation by changing the pH of the incubation medium did not make E. coli K-12 sensitive to Triton X-100.  相似文献   

7.
Microsomal and supernatant chitinase activities have been prepared from mycelial cultures ofMucor mucedo. Studies of their responses to changing temperature and phospholipid composition indicate that the lipid environment is important in regulating membrane-bound chitinase activity, but that supernatant chitinase activity does not have a phospholipid requirement. Membrane-bound chitinase was solubilized by different types of non-denaturing detergents. Maximum solubilization was achieved with 1 mM Zwittergent-14 or 1.2% Triton X-100 (93% and 90% solubilization, respectively). This solubilized chitinase activity could not be activated by protease treatment, i.e., was nonzymogenic, as was the supernatant chitinase. The insoluble residual chitinase activity was, however, zymogenic after treatment with 1.2% Triton X-100, but fully active after treatment with 3% Triton X-100.  相似文献   

8.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents—dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35—were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

9.
We describe here the effects of natural and synthetic detergents on the D-glucose transport into brush-border membranes of vesicles of rabbit's intestine. Two synthetic detergents: Triton X-100 and dodecyltrimethylammonium bromide have been found very strong inhibitors (more than 50 p. 100 of inhibition of maximal D-glucose uptake). Kinetic studies showed that these detergents behaved as mixed type inhibitors. The Na+-dependent transport of amino acids (aspartic acid, lysine, phenylalanine) is only poorly affected by dodecyltrimethylammonium bromide, while Triton X-100 inhibits unspecifically all the transport studied.  相似文献   

10.
Structural changes in the purified (Na+ + K+)-ATPase accompanying detergent inactivation were investigated by monitoring changes in light scattering, intrinsic protein fluorescence, and tryptophan to beta-parinaric acid fluorescence resonance energy transfer. Two phases of inactivation were observed using the non-ionic detergents, digitonin, Lubrol WX and Triton X-100. The rapid phase involves detergent monomer insertion but little change in protein structure or little displacement of closely associated lipids as judged by intrinsic protein fluorescence and fluorescence resonance energy transfer. Lubrol WX and Triton X-100 also caused membrane fragmentation during the rapid phase. The slower phase of inactivation results in a completely inactive enzyme in a particle of 400 000 daltons with 20 mol/mol of associated phospholipid. Fluorescence changes during the course of the slow phase indicate some dissociation of protein-associated lipids and an accompanying protein conformational change. It is concluded that non-parallel inhibition of (Na+ + K+)-ATPase and p-nitrophenylphosphate activity by digitonin (which occurs during the rapid phase of inactivation) is unlikey to require a change in the oligomeric state of the enzyme. It is also concluded that at least 20 mol/mol of tightly associated lipid are necessary for either (Na+ + K+)-ATPase or p-nitrophenylphosphatase activity and that the rate-limiting step in the slow inactivation phase involves dissociation of an essential lipid.  相似文献   

11.
Plasmodium falciparum modifies the host erythrocyte's plasma membrane by the formation of electron-dense structures called knobs. We have produced monoclonal antibodies (McAbs) which specifically bind to the knobs in immunoelectron microscopic experiments with thin sections of parasitized erythrocytes. However, the McAbs fail to bind to the surface of live parasitized erythrocytes. Immunoblotting experiments with these McAbs show the antigen is localized to the erythrocyte plasma membrane. The antigen with which the McAbs react varies in mol. wt from 80 to 95 kd in different knob-producing isolates of P. falciparum and is absent in knobless variants. The McAbs react with the expressed product of a P. falciparum cDNA clone, thus demonstrating that the clone encodes part of this knob-associated protein. The sequence of the cDNA fragment partially overlaps a published cDNA sequence reported to encode the amino-terminal portion of the knob protein, and extends the predicted open reading frame by 190 amino acids. The carboxyl-terminal portion of the predicted amino acid sequence contains a highly charged stretch of approximately 100 amino acid residues. We suggest that this unusual, highly charged region participates in intermolecular salt bridging leading to dense packing of these molecules. This would create the electron-dense regions observed by electron microscopy and might also explain the insolubility of the knob-associated protein in the absence of strong ionic detergents or chaotropic agents.  相似文献   

12.
Inhibitory effects of detergents Triton X-100 and Chaps on 7-ethoxycoumarin O-deethylation activity were examined in the recombinant microsomes containing both rat CYP1A1 and yeast NADPH-P450 reductase (the mixed system) and their fused enzyme (the fused system). Triton X-100 showed competitive inhibition in both mixed and fused systems with K(i) values of 24.6 and 21.5 microM, respectively. These results strongly suggest that Triton X-100 binds to the substrate-binding pocket of CYP1A1. These K(i) values are far below the critical micelle concentration of Triton X-100 (240 microM). Western blot analysis revealed no disruption of the microsomal membrane by Triton X-100 in the presence of 0-77 microM Triton X-100. On the other hand, Chaps gave distinct inhibitory effects to the mixed and fused systems. In the fused system, a mixed-type inhibition was observed with K(i) and K(i)' values of 1.2 and 5.4 mM of Chaps, respectively. However, in the mixed system, multiple inhibition modes by Chaps were observed. Western blot analysis revealed that the solubilized fused enzyme by Chaps preserved the activity whereas the solubilized CYP1A1 and NADPH-P450 reductase reductase showed no activity in the mixed system. Thus, the comparison of the mixed and fused systems appears quite useful to elucidate inhibition mechanism of detergents.  相似文献   

13.
We have examined the ability of nonionic detergents to solubilize thyroid peroxidase from a porcine thyroid particulate fraction, as measured by the release of peroxidase activity into the supernatant fraction after centrifugation at 105,000 X g for 1 hour and the retardation of the supernatant peroxidase of Sepharose 6B. The parameters of peroxidase solubilization by Triton X-100 have been investigated in detail. Under optimum conditions, 60 to 95% of the thryoid peroxidase and about 50% of the total protein is released into the 105,000 X g, 1-hour supernatant. Under the optimum conditions established with Triton X-100, a series of Brij detergents of different chemical structure were equally effective in releasing peroxidase and protein. The protein patterns of the supernatants obtained with these detergents were similar on sodium dodecyl sulfate-polyacrylamide electrophoresis gels, suggesting that the detergents studied release similar membrane proteins. The Triton X-100 and Brij 58 supernatants were chromatographed separately on Sepharose 6B equilibrated with 0.1% Triton X-100 or Brij 58, respectively. In both cases, 75 to 80% of the peroxidase activity was retarded, thereby indicating that the nonionic detergents effect solubilization of the peroxidase rather than dispersal of nonsedimentable membrane fragments. These studies report the first successful solubilization of thyroid peroxidase by nonionic detergents. Together with previous evidence from our laboratory, these experiments indicate that thyroid peroxidase is an integral membrane protein.  相似文献   

14.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30-40 nm in height and 90-100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

15.
Membrane events in exocytosis were studied by examining the effect of different detergents on the K+-stimulated release of noradrenaline in the secretory cell line PC 12. The nonionic detergent Triton X-100 and the cationic detergent cetyltrimethylammonium bromide (CTAB) inhibit the noradrenaline release evoked by 55 mM K+ by 50% at very low concentrations (30 microM and 10 microM, respectively). These values are tenfold lower than the critical micellar concentrations (CMC). No such effect was seen with the anionic detergent sodium dodecyl sulphate (NaDodSO4). The inhibitory effect of 30 microM Triton X-100 is reversible, and the recovery from inhibition correlates with the loss of detergent from the cells as demonstrated by binding studies using [3H]Triton X-100. The possible relationship between this inhibition of secretion and the structural properties of the detergent was investigated. The inhibition in the presence of purified Triton X-100 subfractions turned out to be a function of the length of the oligometric ethyleneglycol chain (C6 to C26). The maximal effect was observed for Triton X-100 molecules having a chain length of 16 carbon atoms, which can penetrate just half of the lipid bilayer of the membrane. Additionally, the phase transition at 13-14 degrees C observed in an Arrhenius plot of noradrenaline release in stimulated cells was abolished. In the presence of 30 microM Triton X-100, 22Na+ uptake, 86Rb+ release, and 45Ca2+ uptake were reduced by 50-60%. These data suggest that the site of action of Triton X-100 is at the level of altering the movement of ions in PC 12 cells during the stimulatory phase of secretion.  相似文献   

16.
The possibilities to solubilize the rat brain cortex muscarinic acetylcholine receptor and its complex with [3H]-L-quinuclidinyl benzilate (QNB) were studied, using 14 detergents. It was shown that the native muscarinic cholinoreceptor was solubilized in addition to digitonin, also by CHAPS, with a 6% yield. Besides, the receptor-QNB complex was solubilized with the detergents Triton X-100, -102, -114, -165 (with 30% and 50% yields) and within a narrow concentration range with sodium dodecyl sulfate (50% yield). Some detergents of the Tween series, e.g., Triton X-45 and -305, as well as sodium deoxycholate and sodium oxycholate, did not solubilize the native receptor and its complex with QNB. It was found that yield of receptor solubilization did not exceed half of the total number of the receptor sites in the membranes, despite the fact that different concentrations of detergents were applied. The solubilization yield did not increase, when different mixtures of detergents were used. It was assumed that incomplete solubilization of the receptor protein reflects its heterogeneity in the membrane structure.  相似文献   

17.
Liver microsomal 3-hydroxy-3-methylglutaryl-CoA reductase was partially purified from cholestyramine-fed rats by sequential extraction of the membrane with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and polyethylene glycol nonylphenyl ether (Triton N-101) and solubilized by incorporation of the resulting insoluble protein preparation into a detergent mixture of Triton N-101 and sodium N-lauroylsarcosinate (Sarkosyl) in the presence of high salt. The purification procedure resulted in approximately a 3-4-fold increase in specific activity compared with the microsomal fraction, and the enzyme was recovered with yields as high as 63%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a blotting experiment using antiserum to the purified 53,000-dalton reductase fragment showed that the major immunoreactive polypeptide had a Mr of 97,000, that expected for the native intact form of the enzyme (Chin, D. J., Gil, G., Russell, D. W., Liscum, L., Luskey, K. L., Basu, S. K., Okayama, H., Berg, P., Goldstein, J. L., and Brown, M. S. (1984) Nature 308, 613-617). In addition, the effect of various detergents on the activity and stability of the membrane-bound and the partially purified enzyme was determined, and a method for protection of the reductase from inactivation caused by the addition of anionic detergents to the assay mixture is described.  相似文献   

18.
Treatment of a purified (NA+ + 5+)-ATPase preparation from dog kidney with digitonin reduced enzymatic activity, with the (Na+ + k+)-atpase reaction inhibited more than the K+-phosphatase reaction that is also catalyzed by this enzyme. Under the usual assay conditions oligomycin inhibits the (Na+ + k+)-atpase reaction but not the K+-phosphatase reaction; however, treatment with digitonin made the K+-phosphatase reaction almost as sensitive to oligomycin as the (Na+ + k+)-atpase reaction. The non-ionic detergents, Triton X-100, Lubrol WX and Tween 20, also conferred sensitivity to oligomycin on the K+-phosphatase reaction (in the absence of oligomycin all these detergents, unlike digitonin, inhibited the K+-phosphatase reaction more than the (Na+ + k+)-atpase reaction). Both digitonin and Triton markedly increased the K0.5 for K+ as activator of the K+-phosphatase reaction, with little effect on the K0.5 for K+ as activator of the (Na+ + k+)-ATpase reaction. In contrast, increasing the K0.5 for K+ in the K+-phosphatase reaction by treatment of the enxyme with acetic anhydride did not confer sensitivity to oligomycin. Both digitonin and Triton also increased the inhibition of the K+-phosphatase reaction by ATP and increased the inhibition by inorganic phosphate and vanadate. These observations are interpreted as digitonin and Triton favoring the E1 conformational state of the enzyme (manifested by sensitivity to oligomycin and a greater affinity for ATP at the low-affinity substrate sites), as opposed to the E2 state (manifested by insensitivity to oligomycin, greater sensitivity to phosphate and vanadate, and a lower K0.5 for K+ in the K+-phosphatase reaction). In addition, digitonin blocked activation of the phosphatase reaction by Na+ plus CTP. This effect is consistent with digitonin dissociating the catalytic subunits of the enzyme, the interaction of which may be essential for activation by Na+ plus nucleotide.  相似文献   

19.
D A Ray  J A Oka  P H Weigel 《Biochemistry》1986,25(20):6097-6103
When digitonin is used to expose intracellular galactosyl (Gal) receptors in isolated rat hepatocytes, only about half of the binding activity for 125I-asialoorosomucoid (ASOR) is found as compared to cells solubilized with Triton X-100. The increased ligand binding in the presence of detergent is not due to a decrease in Kd but could be due either to an increase in the number of ASORs bound per receptor or to exposure of additional receptors. Several experiments support the former explanation. No additional activity is exposed even when 80% of the total cell protein is solubilized with 0.4% digitonin. It is, therefore, unlikely that receptors are in intracellular compartments not permeabilized by digitonin and inaccessible to 125I-ASOR. Digitonin-treated cells are not solubilized by Triton X-100 if they are first treated with glutaraldehyde under conditions that retain specific binding activity. 125I-ASOR binding to these permeabilized/fixed cells increases about 2-fold in the presence of Triton X-100 and a variety of other detergents (e.g., Triton X-114, Nonidet P-40, Brij-58, and octyl glucoside) but not with the Tween series, saponin, or other detergents. When these fixed cells are washed to remove detergent, 125I-ASOR binding decreases almost to the initial level. Affinity-purified Gal receptor linked to Sepharose 4B binds approximately twice as much 125I-ASOR in the presence of Triton X-100 as in its absence. The results suggest that the increase in Gal receptor activity in the presence of nonionic detergents is due to an increase in the valency of the receptor rather than to exposure of additional receptors.  相似文献   

20.
The solubilization of human gel-filtered platelets by octyl glucoside, Triton X-100, dodecylsulfate, and deoxycholate was compared from the analysis of (1) cell lysis, (2) marker leakiness, and (3) component solubility. These analyses all revealed that the effect of detergent concentration on the solubilization of platelets by these detergents was exerted in three stages, i.e., the prelytic, lytic, and complete platelet-lysis stages. These analyses also indicated several differences among platelets in these detergents. (i) The ratio of the platelet-saturation concentration (PSC) to critical micellar concentration (CMC) was about 1/2 for octyl glucoside. Triton X-100 and dodecylsulfate, while it was close to 1 for deoxycholate. (ii) Platelets in octyl glucoside. Triton X-100, and dodecylsulfate all showed parallel curves in cell lysis, protein solubilization and marker leakiness, while the platelet lysis in deoxycholate was identical to the phospholipid solubilization. (iii) The solubility curves of various components in Triton X-100 and deoxycholate were parallel. However, the solubility of cholesterol in octyl glucoside was lower than that of protein and phospholipid. In dodecylsulfate, the solubility of phospholipid and cholesterol was very low in comparison with that of protein. In addition, morphological studies using scanning electron microscopy (scanning EM) revealed that the solubilization by octyl glucoside or Triton X-100 might occur via membrane area expansion. On the other hand, the solubilization by dodecylsulfate or deoxycholate showed membrane vesiculation prior to cell lysis. Moreover, in the prelytic stage, the morphological change in platelets in octyl glucoside showed only concentration dependence by swelling to an ellipsoid and then to a sphere. However, the morphological change in platelets in the other three detergents was dependent not only on the detergent concentration but also on prolonged incubation. Specifically, in Triton X-100, the cells initially changed to spiculate discs and then reached their final shape as swollen discs with surface invagination. In dodecylsulfate and deoxycholate the morphological changes were almost the same. The cell initially deformed in shape to a spiculate disc and finally to a stretched-out flat form. The results are discussed according to the bilayer couple hypothesis. Also, in the prelytic stage, these detergents caused inhibition of the response of platelets to collagen and ADP-fibrinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号