首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pH changes and sulfide production upon addition of sulfate, sulfite or thiosulfate to non-buffered H2-saturated cell suspensions of Desulfovibrio desulfuricans were studied by means of electrodes. The addition of these electron acceptors resulted in a rapid alkalinization of the suspension which was accompanied by sulfide production. At-2° C, alkalinization without immediate sulfide production could be obtained. After addition of 35S-labelled sulfate at-2° C, the label was found to be concentrated 7,500-fold in the cells, while 2 protons per sulfate molecule had disappeared from the outer bulk phase. Alkalinization and sulfide production from micromolar electron acceptor additions depended on the transmembraneous proton gradient ( pH), and were reversibly inhibited in alkaline solution (pH>8.0) or by the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP). Protonophore-inhibited sulfide production from sulfite or thiosulfate could be restored if the cell membranes were permeabilized by the detergent cetyltrimethylammonium bromide (CTAB), or if downhill transport was made possible by the addition of electron acceptors at millimolar concentrations. Sulfate was not reduced under these conditions, presumably because the cells did not contain ATP for its activation. K+-and Na+-ionophores such as nigericin, valinomycin or monensin appeared to be of limited efficiency in D. desulfuricans. In most experiments, sulfate reduction was inhibited by the K+–H+ antiporter nigericin in the presence of K+, but not by the thiocyanate anion or the K+-transporter valinomycin. The results indicate that sulfate, sulfite and thiosulfate are taken up by proton-anion symport, presumably as undissociated acids with an electroneutral mechanism, driven by the transmembraneous pH gradient ( pH) or by a solute gradient. Kinetics of alkalinization and sulfide production in cells grown with different electron acceptors revealed that D. desulfuricans has different specific uptake systems for sulfate and thiosulfate, and obviously also for sulfite. It is proposed that the electron acceptor transport finally will not consume net energy during growth in buffered medium: The protons taken up during active electron acceptor transport leave the cell with the reduced end-product by simple passive diffusion of H2S.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - FCCP carbonyl cyanide p-trifluoromethoxy phenylhydrazone - CTAB cethyltrimethylammonium bromide  相似文献   

2.
Uptake of 35S-labelled sulfate was studied with a new isolate of Desulfovibrio desulfuricans, strain CSN. Micromolar additions of sulfate (1–10 M or nmol/mg protein) to cell suspensions incubated in 150 mM KCl at-1°C were almost completely taken up and accumulated about 5,000-fold. Accumulation was not influenced by incubation in NaCl instead of KCl, by acidic pH (5.5) or by incubation under air for 10 min. In alkaline milieu (pH 8.5), after prolonged contact with air (2 h), or after growth with excess sulfate or thiosulfate as electron acceptor, the amount taken up was diminished approximately by half. Pasteurization inhibited sulfate uptake completely. With increasing concentrations of added sulfate (0.1 to 2.5 mM) the intracellular concentration increased only slowly up to 25 mM, and the accumulation factor decreased down to 8. Sulfate transport was reversible. Accumulated sulfate was rapidly lost from the cells after addition of excess non-labelled sulfate or after addition of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The ATPase inhibitor dicyclohexylcarbodiimide (DCCD) specifically inhibited sulfate reduction but had no immediate influence on sulfate accumulation. Addition of the phosphate analogue arsenate (5 mM) was without effect. These results were not in favour of an ATP-dependent transport system. The K+-H+-antiporter nigericin (in 150 mM KCl) and the Na+-H+-antiporter monensin (in 150 mM NaCl) caused partial inhibition of sulfate accumulation, whereas the K+-transporter valinomycin (in 150 mM KCl) and the Na+-H+ exchange inhibitor amiloride (2 mM) were without effect. The permeant thiocyanate anion (150 mM) inhibited sulfate uptake by 60% at pH 7, and completely at pH 8.5. Although the effects of the different ionophores on the chemiosmotic gradients have not been studied so far, the results indicated that probably both, pH and drive sulfate accumulation and that sulfate is taken up electrogenically in symport with more than 2 protons. The structural sulfate analogues tungstate and molybdate (0.1 mM, each) did not affect sulfate accumulation, although molybdate inhibited sulfate reduction. Chromate completely blocked both of these activities. Sulfite and selenite caused little or no decrease of sulfate accumulation, whereas with thiosulfate and selenate significant inhibition was observed.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide  相似文献   

3.
The freshwater sulfate reducer Desulfomicrobium baculatum accumulated 35S-sulfate up to 120-fold by an energy-dependent transport system, as was concluded from inhibition of transport by tetrachlorosalicylanilide (TCS). Sulfate accumulation was completely reversible and depended on the presence of sodium ions. The sodium ion gradient ([Na+]out/[Na+]in) was eightfold and was built up by electrogenic Na+/H+ antiport. Together with a membrane potential of-145 m V, the sodium ion motive force was-199 m V, from which a symport stoichiometry of two sodium ions per sulfate was calculated. This is the first report of a freshwater sulfate reducer taking up sulfate electroneutrally in symport with sodium ions and not with protons.Abbreviations ETH 2120 N,N'-Dibenzyl-N,N'-diphenyl-1,2-phenylendioxydiacetamide - TCS Tetrachlorosalicylanilide  相似文献   

4.
Uptake of 35S-labelled sulfate and thiosulfate was studied in twenty sulfate-reducing bacteria. Micromolar additions of these substrates were highly accumulated by washed cells of freshwater and marine strains. In marine strains accumulation required Na+. Generally, the uptake capacity was increased after sulfate limitation during growth. With two marine species, Desulfovibrio salexigens and Desulfobacterium autotrophicum, the effects of various ionophores and inhibitors affecting the transmembrane pH or Na+ gradient or the membrane potential were studied. In both strains transport was reversible. There was no discrimination between sulfate and thiosulfate. With increasing additions the amount taken up increased, while the accumulation factor (Cin/Cout) decreased. Uptake was not directly correlated with the ATP level inside the cells. From these results and the action patterns of the inhibitors tested it is concluded that marine sulfate-reducing bacteria accumulate sulfate and thiosulfate electrogenically in symport with Na+ ions, while in freshwater strains protons are symported. The high-accumulating systems are induced only at low sulfate concentration, while low-accumulating systems are active at sulfate-sufficient conditions.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - ETH 157 N, N-dibenzyl-N,N-diphenyl-1,2-diphenylendioxydiacetamide - TCS 3,3,4,5-tetrachlorosalicylanilide  相似文献   

5.
The protonmotive force in several sulfate-reducing bacteria has been determined by means of radiolabelled membrane-permeant probes (tetraphenyl-phosphonium cation, TPP+, for , and benzoate for pH). In six of ten freshwater strains tested only the pH gradient could be determine, while the membrane potential was not accessible due to nonspecific binding of TPP+. The protonmotive force of the other four strains was between –110 and –155 mV, composed of a membrane potential of –80 to –140 mV and a pH gradient between 0.25 and 0.8 (inside alkaline) at pHout=7. In Desulfobulbus propionicus the pH gradient decreased with rising external pH values. This decrease, however, was compensated by an increasing membrane potential. Sulfate, which can be highly accumulated by the cells, did not affect the protonmotive force, if added in concentrations of up to 4 mM. The highest sulfate accumulation observed (2500-fold), which occurred at external sulfate concentrations below 5 M, could be explained by a symport of three protons per sulfate, if equilibrium with the protonmotive force was assumed. At higher sulfate concentrations the accumulation decreased and suggested an electroneutral symport of two protons per sulfate. At sulfate concentrations above 500 M, the cells stopped sulfate uptake before reaching an equilibrium with the protonmotive force.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - MOPS morpholinopropanesulfonic acid - TPP+ tetraphenylphosphonium cation - EDTA ethylenediaminetetraacetic acid - pH transmembrane pH gradient (pHin-pHout) - transmembrane electrical potential difference  相似文献   

6.
The sodium ion gradient and the membrane potential were found to be the driving forces of sulfate accumulation in the marine sulfate reducer Desulfovibrio salexigens. The protonmotive force of –158 mV, determined by means of radiolabelled membrane-permeant probes, consisted of a membrane potential of –140 mV and a pH gradient (inside alkaline) of 0.3 at neutral pHout. The sodium ion gradient, as measured with silicone oil centrifugation and atomic absorption spectroscopy, was eightfold ([Na+]out/[Na+]in) at an external Na+ concentration of 320 mM. The resulting sodium ionmotive force was –194 mV and enabled D. salexigens to accumulate sulfate 20000-fold at low external sulfate concentrations (<0.1 M). Under these conditions high sulfate accumulation occurred electrogenically in symport with three sodium ions (assuming equilibrium with the sodium ion-motive force). With increasing external sulfate concentrations sulfate accumulation decreased sharply, and a second, low-accumulating system symported sulfate electroneutrally with two sodium ions. The sodium-ion gradient was built up by electrogenic Na+/H+ antiport. This was demonstrated by (i) measuring proton translocation upon sodium ion pulses, (ii) studying uptake of sodium salts in the presence or absence of the electrical membrane potential, and (iii) the inhibitory effect of the Na+/H+ antiport inhibitor propylbenzilylcholin-mustard HCl (PrBCM). With resting cells ATP synthesis was found after proton pulses (changing the pH by three units), but neither after pulses of 500 mM sodium ions, nor in the presence of the uncoupler tetrachorosalicylanilide (TCS). It is concluded that the energy metabolism of the marine strain D. salexigens is based primarily on the protonmotive force and a protontranslocating ATPase.Abbreviations MOPS morpholinopropanesulfonic acid - TCS tetrachlorosalicylanilide - PrBCM propylbenzilylcholin-mustard HCl - Tris tris(hydroxymethyl)aminomethane - TPP+ bromide tetraphenylphosphonium bromide  相似文献   

7.
34 yeast strains representing 22 species and two varieties were investigated for the existence of a proton-sugar symport. The changes in pH of unbuffered cell suspensions on the addition of alkali, acid, transportable sugars and uncouplers were recorded. Responses indicating the existence of an energy dependent proton extrusion and H+-sugar symport were found in most cases, particularly in Rhodotorula but rarely in Saccharomyces species. Remarkable differences were found among strains belonging to the same species.List of Abbreviations DNP 2,4-dinitrophenole - CCCP carbonyl cyanide m-chlorophenyl hydrazone  相似文献   

8.
Summary An electrogenic K+–Na+ symport with a high affinity for K+ has been found inChara (Smith & Walker, 1989). Under voltage-clamp conditions, the symport shows up as a change in membrane current upon adding either K+ or Na+ to the bathing medium in the presence of the other. Estimation of kinetic parameters for this transport has been difficult when using intact cells, since K+–Na+ current changes show a rapid falling off with time at K+ concentrations above 50 m. Cytoplasm-enriched cell fragments are used to overcome this difficulty since they do not show the rapid falling off of current change seen with intact cells. Current-voltage curves for the membrane in the absence or presence of either K+ or Na+ are obtained, yielding difference current-voltage curves which isolate the symport currents from other transport processes. The kinetic parameters describing this transport are found to be voltage dependent, withK m for K+ ranging from 30 down to 2 m as membrane potential varies from –140 to –400 mV, andK m for Na+ ranging between 470 and 700 m over a membrane potential range of –140 to –310 mV.Two different models for this transport system have been investigated. One of these involves the simultaneous transport of both the driver and substrate ions across the membrane, while the other allows for the possibility of the two ions being transported consecutively in two distinct reaction steps. The experimental results are shown to be consistent with either of these cotransport models, but they do suggest that binding of K+ occurs before that of Na+, and that movement of charge across the membrane (the voltage-dependent step) occurs when the transport protein has neither K+ nor Na+ bound to it.  相似文献   

9.
Transport of branched-chain amino acids in Corynebacterium glutamicum   总被引:5,自引:0,他引:5  
The transport of branched-chain amino acids was characterized in intact cells of Corynebacterium glutamicum ATCC 13032. Uptake and accumulation of these amino acids occur via a common specific carrier with slightly different affiniteis for each substrate (K m[Ile]=5.4 M, K m[Leu]=9.0 M, K m[Val]=9.5 M). The maximal uptake rates for all three substrates were very similar (0.94–1.30 nmol/mg dw · min). The optimum of amino acid uptake was at pH 8.5 and the activation energy was determined to be 80 kJ/mol. The transport activity showed a marked dependence on the presence of Na+ ions and on the membrane potential, but was independent of an existing proton gradient. It is concluded, that uptake of branched-chain amino acid transport proceeds via a secondary active Na+-coupled symport mechanism.Abbreviations CCCP Carboxyl cyanide m-chlorophenylhydrazone - dw dry weight - MES 2[N-morpholino]ethanesulfonic acid - mon monensin - nig nigericin - TPP tetraphenylphosphonium bromide - Tris tris[hydroxymethyl]aminomethane - val valinomycin  相似文献   

10.
Proton translocation by washed cells of the sulfate-reducing bacterium Desulfovibrio desulfuricans strain Essex 6 was studied by means of pH and sulfide electrodes. Reversible extrusion of protons could be induced either by addition of electron acceptors to cells incubated under hydrogen, or by addition of hydrogen to cells incubated in the presence of an appropriate electron acceptor. Proton translocation was increased in the presence of ionophores that dissipate the membrane potential (thiocyanate, methyl triphenylphosphonium cation, but not valinomycin) and was sensitive to the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). Upon micromolar additions of H2, usually sulfide was formed in stoichiometric amounts, and extrapolated H+/H2 ratios were 1.8±0.5 with sulfate, 2.3±0.3 with sulfite and 0.5±0.1 with thiosulfate. In several experiments hydrogen pulses caused increased proton extrusion not associated with sulfide production. This was a hint that sulfite might be reduced via intermediates. In the absence of H2S formation, extrapolated H+/H2 ratios were 3.1±0.8 with sulfate, 3.4±1.1 with sulfite, 4.4±0.8 with thiosulfate and 6.3±1.2 with oxygen. Micromolar pulses of electron acceptors to cells incubated under H2 caused less proton translocation than H2 pulses in presence of excess of electron acceptor; extrapolated H+/H2 ratios were 1.3±0.4 with sulfite, 3.3±0.9 with nitrite and 4.2±0.5 with oxygen. No proton translocation was observed after micromolar pulses of sulfate, thiosulfate or nitrate to cells incubated under hydrogen in the presence of thiocyanate. Inhibition experiments with CO and CuCl2 revealed that the hydrogenase activity was localized in the intracellular space, and that no periplasmic hydrogenase was present. The results indicate that D. desulfuricans can generate a proton gradient by pumping protons across the cytoplasmic membrane.Abbreviations APS adenosine 5-phosphosulfate - CCCP carbonyl cyanide m-chlorophenylhydrazone - MTTP+ methyl triphenylphosphonium cation  相似文献   

11.
Uptake of [14C]sucrose by plasma membrane vesicles from leaves of tobacco (Nicotiana tabacum L.) was measured after the imposition of an inwardly directed proton gradient (ΔpH = 2) and an electrical gradient (Δψ = −68 mV, inside negative) across the vesicle membrane. The vesicles were isolated from a microsomal fraction by two-phase partitioning using media that contained 330 mM of either sorbitol or sucrose. Sucrose transport into vesicles isolated using the sorbitol-containing media showed the hallmarks of electrogenic H+ -symport, as it was highly dependent on ΔpH, could be increased three- to four-fold by Δψ, and was abolished by carbonylcyanide m-chlorophenylhydrazone (CCCP). Transport of [14C]sucrose into vesicles that were isolated using the sucrose-containing media apparently occurred by counter exchange. Its initial influx also depended on a low external pH, but it was insensitive to CCCP and hardly stimulated by Δψ. Both symport and counter exchange obeyed simple Michaelis-Menten kinetics. Transport that depends linearly on the external sucrose concentration could not be detected, indicating that the ‘linear’ component that has been observed in sucrose uptake by leaf tissues does not represent a transport route that is provided by the sucrose symporter. The potential role of H+/sucrose-symporters in phloem unloading is briefly discussed.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

12.
Summary Voltage-clamp and tracer techniques, applied simultaneously or separately to individual cells, have been used to show that K+-starved internodal cells ofChara australis can develop an electrogenic transport system, which requires and transports K+ with high affinity (K 1/2 about 30 m) and Na+ with lower affinity (K 1/2 about 500 m). The most likely mechanism is symport of K+ with Na+, with a stoichiometric ratio of 11. In simultaneous measurements of quantities of charge and of ions entering individual cells, the quantity of K+ was consistently half the quantity of electric charge, while that of Na+ was consistently somewhat lower than that. Possible reasons for this discrepancy are discussed. The electrogenic symport of K+ with Na+ has not previously been reported for any cell. Its functional significance inChara is apparently the active uptake of K+ at the expense of the electrochemical potential difference for Na+. This new symport reveals the unexpected presence inChara of a Na+-linked chemiosmotic circuit alongside the known H+-linked circuit.  相似文献   

13.
In this work, dynamics was studied of uptake of p-aminohippurate by basolateral membrane vesicles isolated from rat kidney proximal tubules. The uphill PAH transport into the basolateral membrane vesicles was shown to occur in the presence of α-ketoglutarate and Na+-gradient. Based on mathematical model of symport and antiport cooperation, the mechanism of energy coupling of PAH transport via exchanger with Na+-dicarboxylate symport is discussed. Based on comparison of our own and literature data, the data analysis shows adequacy of the proposed mathematical model to describe the symport and antiport cooperation. This model has been shown to enable estimation of re-orientation probability of the empty anion exchanger (without substrate) from one membrane side to the other.  相似文献   

14.
Ethanol was rapidly degraded to mainly acetate in anaerobic freshwater sediment slurries. Propionate was produced in small amounts. Desulfovibrio species were the dominant bacteria among the ethanol-degrading organisms. The propionate-producing Desulfobulbus propionicus came to the fore under iron-limited conditions in an ethanol-limited chemostat with excess sulfate inoculated with anaerobic intertidal freshwater sediment. In the absence of sulfate, ethanol was fermented by D. propionicus Lindhorst to propionate and acetate in a molar ratio of 2.0.l-Propanol was intermediately produced during the fermentation of ethanol. In the presence of H2 and CO2, ethanol was quantitatively converted to propionate. H2-plus sulfate-grown cells of D. propionicus Lindhorst were able to oxidize l-propanol and l-butanol to propionate and butyrate respectively with the concomitant reduction of acetate plus CO2 to propionate. Growth was also observed on acetate alone in the presence of H2 and CO2 D. propionicus was able to grow mixotrophically on H2 plus an organic compound. Finally, a brief discussion has been given of the ecological niche of D. propionicus in anaerobic freshwater sediments.  相似文献   

15.
Summary In rabbit gallbladder epithelium, a Na+/H+, Cl/HCO 3 double exchange and a Na+–Cl symport are both present, but experiments on intact tissue cannot resolve whether the two transport systems operate simultaneously. Thus, isolated apical plasma membrane vesicles were prepared. After preloading with Na+, injection into a sodium-free medium caused a stable intravesicular acidification (monitored with the acridine orange fluorescence quenching method) that was reversed by Na+ addition to the external solution. Although to a lesser extent, acidification took place also in experiments with an electric potential difference (PD) equal to 0. If a preset pH difference (pH) was imposed ([H+]in>[H+]out, PD=0), the addition of Na-gluconate to the external solution caused pH dissipation at a rate that followed saturation kinetics. Amiloride (10–4 m) reduced the pH dissipation rate. Taken together, these data indicate the presence of Na+ and H+ conductances in addition to an amiloride-sensitive, electroneutral Na+/H+ exchange.An inwardly directed [Cl] gradient (PD=0) did not induce intravesicular acidification. Therefore, in this preparation, there was no evidence for the presence of a Cl/OH exchange.When both [Na+] and [Cl] gradients (outwardly directed, PD=0) were present, fluorescence quenching reached a maximum 20–30 sec after vesicle injection and then quickly decreased. The decrease was not observed in the presence of a [Na+] gradient alone or the same [Na+] gradient with Cl at equal concentrations at both sides. Similarly, the decrease was abolished in the presence of both Na+ and Cl concentration gradients and hydrochlorothiazide (5×10–4 m). The decrease was not influenced by an inhibitor of Cl/OH exchange (10–4 m furosemide) or of Na+–K+–2Cl symport (10–5 m bumetanide).We conclude that a Na+/H+ exchange and a Na+–Cl symport are present and act simultaneously. This suggests that in intact tissue the Na+–Cl symport is also likely to work in parallel with the Na+/H+ exchange and does not represent an induced homeostatic reaction of the epithelium when Na+/H+ exchange is inhibited.  相似文献   

16.
In carp erythrocytes, noradrenaline (10-6 mol·l-1) induces a 30- to 40-fold activation of Na+/H+ exchange (the ethylisopropylamiloride-inhibited component of the 22Na influx) and a fourfold stimulation of the Na+, K+ pump (ouabain-inhibited component of 86Rb influx). In both cases the effect of noradrenaline is blocked by propranolol but not phentolamine and is imitated by forskolin. An activator of protein kinase C (-phorbol 12-myristate, 13-acetate) increases Na+/H+ exchange by 10 times and decreases the Na+, K+ pump activity by 20–30 percent. In the presence of ethylisopropylamiloride the increment of the Na+, K+ pump activity induced by noradrenaline is reduced by 35–45 percent, indicating the existence of a Na+/H+ exchange-independent mechanism of the Na+, K+ pump regulation by -adrenergic catecholamines. Hypertonic shrinkage of carp erythrocytes results in a 40- to 80-fold activation of Na+/H+ exchange, whereas hypotonic swelling induces an increase in the rate of 86Rb+ efflux which is inhibited by furosemide by about 30–40 percent. The rate of pH0 recovery in response to acidification or alkalinization in rat erythrocytes is approximately 15 times as fast as in carp erythrocytes. Unlike in rat erythrocytes, valinomycin does not cause an alkalinization of incubation medium in carp erythrocytes indicating the absence of conductive pathway in the operation of anion transporter protein. A scheme is suggested which describes the interrelation of Na+/H+ exchange, Na+, K+ pump and a non-identified system providing for K+ efflux in cell swelling, regulation of cell volume and cytoplasmic pH in fish erythrocytes under conditions of deep hypoxia and high activity.Abbreviations cAMP cyclic adenosine monophosphate - CCCP carbonylcyamide m-chlorophenylhydrazone - DMSO dimethylsulphoxide - EIPA ethylisopropylamiloride - NA noradrenaline - PMA -phorbol 12-myristate, 13-acetate - RVD regulatory volume decrease - RVI regulatory volume increase  相似文献   

17.
Summary Active transport of potassium in K+-starvedNeurospora was previously shown to resemble closely potassium uptake in yeast,Chlorella, and higher plants, for which K+ pumps or K+/H+-ATPases had been proposed. ForNeurospora, however, potassium-proton cotransport was demonstrated to operate, with a coupling ratio of 1 H+ to 1 K+ taken inward so that K+, but not H+, moves against its electrochemical gradient (Rodriguez-Navarro et al.,J. Gen. Physiol. 87:649–674).In the present experiments, the current-voltage (I–V) characteristic of K+–H+ cotransport in spherical cells ofNeurospora has been studied with a voltage-clamp technique, using difference-current methods to dissect it from other ion-transport processes in theNeurospora plasma membrane. Addition of 5-200 M K+ to the bathing medium causes 10–150 mV depolarization of the unclamped membrane, and yields a sigmoidI–V curve with a steep slope (maximal conductance of 10–30 S/cm2) for voltages of –300 to –100 mV, i.e., in the normal physiologic range. Outside that range the apparentI–V curve of the K+-H+ symport saturates for both hyperpolarization and depolarization. It fails to cross the voltage axis at its predicted reversal potential, however, an effect which can be attributed to failure of theI–V difference method under reversing conditions.In the absence of voltage clamping, inhibitors—such as cyanide or vanadate—which block the primary proton pump inNeurospora also promptly inhibit K+ transport and K+-H+ currents. But when voltage clamping is used to offset the depolarizing effects of pump blockade, the inhibitors have no immediate effect on K+-H+ currents. Thus, the inhibition of K+ transport usually observed with these agents reflects the kinetic effect of membrane depolarization rather than any direct chemical action on the cotransport system itself.Detailed study of the effects of [K+]o and pHo on theI–V curve for K+-H+ symport has revealed that increasing membrane potential systematicallydecreases the apparent affinity of the transporter for K+, butincreases affinity for protons (K m range: for [K+]o, 15–45 M; for [H+]o, 10–35 nM). This behavior is consistent with two distinct reaction-kinetic models, in which (i) a neutral carrier binds K+ first and H+ last in the forward direction of transport, or (ii) a negatively charged carrier (–2) binds H+ first and K+ last.  相似文献   

18.
19.
N. Alan Walker  Dale Sanders 《Planta》1991,185(3):443-445
Ion-gradient-coupled transport systems in plants are normally electrophoretic and carry inward current. Rapid inward electrical currents elicited by K+, by urea and by lysine in the freshwater acidophilic alga Nitella translucens Agh. are all very strongly dependent on the presence of Na+ or (except in the case of K+) Li+. These results indicate that Na+-coupled solute transport in plants, which had previously been demonstrated only in an alkalophilic species (Chara australis), did not evolve recently as an alternative to H+-coupled transport in high-pH environments, and might therefore be more widely distributed than has hitherto been recognised.We are very grateful to Professor E.A.C. MacRobbie and Mr J. Banfield (Botany School, University of Cambridge) for supplies of Nitella translucens. Financial support for this work was obtained from the Australian Department of Industry, Technology and Commerce and the Joint Research Council's Biotechnology Collaboration Scheme between Britain and Australia (to N.A.W. and D.S.), and from an Agricultural and Food Research Council Grant (PG 87/501 to D.S.). D.S. was a Nuffield Foundation Science Research Fellow.  相似文献   

20.
This study was undertaken in order to demonstrate the extent to which the activity of the plasmalemma H+-ATPase compensates for the charge and acidity flow caused by the sugar-proton symport in cells of chlorella vulgaris Beij.. Detailed analysis of H+ and K+ fluxes from and into the medium together with measurements of respiration, cytoplasmic pH, and cellular ATP-levels indicate three consecutive phases after the onset of H+ symport. Phase 1 occurred immediately after addition of sugar, with an uptake of H+ by the hexoseproton symport and charge compensation by K+ loss from the cells and, to a smaller degree, by loss of another ion, probably a divalent cation. This phase coincided with strong membrane depolarization. Phase 2 started approximately 5 s after addition of sugar, when the acceleration of the H+-ATPase caused a slow-down of the K+ efflux, a decrease in the cellular ATP level and an increase in respiration. The increased respiration was most probably responsible for a pronounced net acidification of the medium. This phase was inhibited in deuterium oxide. In phase 3, finally, a slow rate of net H+ uptake and K+ loss was established for several further minutes, together with a slight depolarization of the membrane. There was hardly any pH change in the cytoplasm, because the cytoplasmic buffering capacity was high enough to stabilize the pH for several minutes despite the net H+ fluxes. The quantitative participation of the several phases of H+ and K+ flow depended on the pH of the medium, the ambient Ca2+ concentration, and the metabolic fate of the transported sugar. The results indicate that the activity of the H+-ATPase never fully compensated for H+ uptake by the sugar-symport system, because at least 10% of symport-caused charge inflow was compensated for by K+ efflux. The restoration of pH in the cytoplasm and in the medium was probably achieved by metabolic reactions connected to increased glycolysis and respiration.Abbreviations DMO dimethyloxazolidinedione - EDTA ethylcnediaminetetraacetic acid - p.c. packed cell volume  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号