首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immobilization is a key step involved in probing molecular interactions using single-molecule force spectroscopy methods, including atomic force microscopy (AFM). To our knowledge, we describe a novel approach termed flexible nanoarray (FNA) in which the interaction between the two internally immobilized amyloid β peptides is measured by pulling of the tether. The FNA tether was synthesized with nonnucleotide phosphoramidite monomers using the DNA synthesis chemistry. The two anchoring points for immobilization of the peptides inside the tether were incorporated at defined distances between them and from the ends of the polymer. Decamers of amyloid β peptide capable of dimer formation were selected as a test system. The formation of the peptide dimers was verified by AFM force spectroscopy by pulling the tether at the ends. In these experiments, the thiolated end of the FNA tether was covalently immobilized on the AFM substrate functionalized with maleimide. The other end of the FNA tether was functionalized with biotin to form a noncovalent link with the streptavidin functionalized AFM tip during the approach stage. The dimers’ rupture fingerprint was unambiguously identified on the force curves by its position and the force value. The FNA design allowed reversible experiments in which the monomers were allowed to associate after the rupture of the dimers by performing the approach stage before the rupture of the biotin-streptavidin link. This suggests that the FNA technique is capable of analyzing multiple intermolecular interactions in the same molecular complex. The computational analysis showed that the tethered peptides assemble into the same dimer structure as that formed by nontethered peptides, suggesting that the FNA tether has the necessary flexibility to enable assembly of the dimer even during the course of the force spectroscopy experiment.  相似文献   

2.
In order to investigate the dynamic strength of the interaction between lung surfactant protein D (SP-D) and different sugars, maltose, mannose, glucose, and galactose, we have used an atomic force microscope to monitor the interaction on a single molecule scale. The experiment is performed by measuring the rupture force when the SP-D-sugar bond is subjected to a continuously increasing force. Under these dynamic conditions, SP-D binds strongest to d-mannose and weakest to maltose and d-galactose. These results differ from equilibrium measurements wherein SP-D exhibits preference for maltose. On the basis of this finding, we propose that the binding of the disaccharide maltose to SP-D, which is energetically stronger than the binding of any of the monosacchrides, alters the structure of the binding site in a way that lowers the dynamic strength of the bond. We conclude that determining the strength of a protein-ligand bond under dynamic stress using an atomic force microscope is possibly more relevant for mimicking the actual nonequilibrium physiological situation in the lungs.  相似文献   

3.
Visualization of flowing neutrophils colliding with adherent 1-mum-diameter beads presenting P-selectin allowed the simultaneous measurement of collision efficiency (epsilon), membrane tethering fraction (f), membrane tether growth dynamics, and PSGL-1/P-selectin binding lifetime. For 1391 collisions analyzed over venous wall shear rates from 25 to 200 s(-1), epsilon decreased from 0.17 to 0.004, whereas f increased from 0.15 to 0.70, and the average projected membrane tether length, L(tether)(m), increased from 0.35 mum to approximately 2.0 mum over this shear range. At all shear rates tested, adhesive collisions lacking membrane tethers had average bond lifetimes less than those observed for collisions with tethers. For adhesive collisions that failed to form membrane tethers, the regressed Bell parameters (consistent with single bond Monte Carlo simulation) were zero-stress off-rate, k(off)(0) = 0.56 s(-1) and reactive compliance, r = 0.10 nm, similar to published atomic force microscopy (AFM) measurements. For all adhesion events (+/- tethers), the bond lifetime distributions were more similar to those obtained by rolling assay and best simulated by Monte Carlo with the above Bell parameters and an average of 1.48 bonds (n = 1 bond (67%), n = 2 (22%), and n = 3-5 (11%)). For collisions at 100 s(-1), pretreatment of neutrophils with actin depolymerizing agents, latrunculin or cytochalasin D, had no effect on epsilon, but increased L(tether)(m) by 1.74- or 2.65-fold and prolonged the average tether lifetime by 1.41- or 1.65-fold, respectively. Jasplakinolide, an actin polymerizing agent known to cause blebbing, yielded results similar to the depolymerizing agents. Conversely, cholesterol-depletion with methyl-beta-cyclodextrin or formaldehyde fixation had no effect on epsilon, but reduced L(tether)(m) by 66% or 97% and reduced the average tether lifetime by 30% or 42%, respectively. The neutrophil-bead collision assay combines advantages of atomic force microscopy (small contact zone), aggregometry (discrete interactions), micropipette manipulation (tether visualization), and rolling assays (physiologic flow loading). Membrane tether growth can be enhanced or reduced pharmacologically with consequent effects on PSGL-1/P-selectin lifetimes.  相似文献   

4.
The adhesive and mechanical properties of a cell-substratum adhesive secreted by live diatom cells were examined in situ using atomic force microscopy. The resulting force curves have a regular saw-tooth pattern, the characteristic fingerprint of modular proteins, and when bridged between tip and surface can repeatedly be stretched and relaxed resulting in precisely overlaying saw-tooth curves (up to approximately 600 successive cycles). The average rupture force of the peaks is 0.794 +/- 0.007 (mean +/- SE) nN at a loading rate of 0.8 microm/s and the average persistence length is 0.026 +/- <0.001 (mean +/- SE) nm (fit using the worm-like chain model). We propose that we are pulling on single adhesive nanofibers, each a cohesive unit composed of a set number of modular proteins aligned in register. Furthermore, we can observe and differentiate when up to three adhesive nanofibers are pulled based upon multimodal distributions of force and persistence length. The high force required for bond rupture, high extensibility (approximately 1.2 microm), and the accurate and rapid refolding upon relaxation, together provide strong and flexible properties ideally suited for the cell-substratum adhesion of this fouling diatom and allow us to understand the mechanism responsible for the strength of adhesion.  相似文献   

5.
Proteins of many types experience tensile forces in their normal function, and vascular cell adhesion molecule-1 (VCAM-1) is typical in this. VCAM has seven Ig domains, and each has a disulfide bond (-S-S-) buried in its core that covalently stabilizes about half of each domain against unfolding. VCAM is extended here by single molecule atomic force microscopy in the presence or absence of reducing agents. In the absence of reducing agent, a sawtooth pattern of forced unfolding reveals an average period and total length consistent with disulfide locations in VCAM. With increasing reducing agent, accessible disulfides are specifically reduced (to SH); the average period for unfolding increases up to saturation together with additional metrics of unfolding. Steered molecular dynamics simulations of unfolding indeed show that the core disulfide bond is solvent-exposed in the very earliest stages of protein extension. Michaelis-Menten kinetics emerge with reduction catalyzed by force (tau(reduction) approximately 10(-4) s). The results establish single molecule reduction, one bond at a time, and show that mechanical forces can play a key role in modulating the redox state of cell adhesion proteins that are invariably stressed in cell adhesion.  相似文献   

6.
7.
Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2′-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether. Experiments were performed at 10, 25 and 37 °C to address different conformational states of SGLT1. Unbinding forces between ligands and SGLT1 were recorded at different loading rates by changing the retraction velocity, yielding binding probability, width of energy barrier of the binding pocket, and the kinetic off rate constant of the binding reaction. With increasing temperature, width of energy barrier and average life time increased for the interaction of SGLT1 with thioglucose (coupled via acrylamide to a long PEG) but decreased for aminophlorizin binding. The former indicates that in the membrane-bound SGLT1 the pathway to sugar translocation involves several steps with different temperature sensitivity. The latter suggests that also the aglucon binding sites for transport inhibitors have specific, temperature-sensitive conformations.  相似文献   

8.
Li S  Shi R  Wang Q  Cai J  Zhang S 《Gene》2012,495(2):189-193
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis and male fertility. However, spermatogenesis has direct links with some adhesion molecules on SSCs membrane. Β1-integrin (CD29) is such a kind of adhesion molecule and a biomarker of pig's SSCs. Therefore, quantitative characteristics of β1-integrin expression level in a single cell could help us to capture the signal switch and understand the mechanism of spermatogenesis. In this study, atomic force microscopy (AFM) was used to obtain the morphology and ultrastructure of SSCs at nanometer level, and the CD29 Ab-functionalized AFM tip was used to examine β1-integrin distribution on the cell membrane. There were many force-binding spots on about 50% of cell membrane binding to the CD29 Ab-functionalized AFM tip, and the mean bind rupture force was 283.63±12.56PN which was much larger than the non-specific average force 70.75±10.95PN. Meanwhile, β1-integrin on SSCs membrane was distributed non-uniformly, and there were some β1-integrins appeared to be expressed as 150-350 nm nanoclusters on the membrane. Our results discovered the structure of SSCs at nanometer level by AFM. The force between β1-integrin antigen-antibody interactions and the distribution of β1-integrin protein on SSCs membrane were also firstly demonstrated.  相似文献   

9.
Atomic force microscopy was used to investigate the cellular response to histamine, one of the major inflammatory mediators that cause endothelial hyperpermeability and vascular leakage. AFM probes were labeled with fibronectin and used to measure binding strength between alpha5beta1 integrin and fibronectin by quantifying the force required to break single fibronectin-integrin bonds. The cytoskeletal changes, binding probability, and adhesion force before and after histamine treatment on endothelial cells were monitored. Cell topography measurements indicated that histamine induces cell shrinkage. Local cell stiffness and binding probability increased twofold after histamine treatment. The force necessary to rupture single alpha5beta1-fibronectin bond increased from 34.0 +/- 0.5 pN in control cells to 39 +/- 1 pN after histamine treatment. Experiments were also conducted to confirm the specificity of the alpha5beta1-fibronectin interaction. In the presence of soluble GRGDdSP the probability of adhesion events decreased >50% whereas the adhesion force between alpha5beta1 and fibronectin remained unchanged. These data indicate that extracellular matrix-integrin interactions play an important role in the endothelial cell response to changes of external chemical mediators. These changes can be recorded as direct measurements on live endothelial cells by using atomic force microscopy.  相似文献   

10.
Thrombin aptamer binding strength and stability is dependent on sterical parameters when used for atomic force microscopy sensing applications. Sterical improvements on the linker chemistry were developed for high-affinity binding. For this we applied single molecule force spectroscopy using two enhanced biotinylated thrombin aptamers, BFF and BFA immobilized on the atomic force microscopy tip via streptavidin. BFF is a dimer composed of two single-stranded aptamers (aptabody) connected to each other by a complementary sequence close to the biotinylated end. In contrast, BFA consists of a single DNA strand and a complementary strand in the supporting biotinylated part. By varying the pulling velocity in force-distance cycles the formed thrombin-aptamer complexes were ruptured at different force loadings allowing determination of the energy landscape. As a result, BFA aptamer showed a higher binding force at the investigated loading rates and a significantly lower dissociation rate constant, koff, compared to BFF. Moreover, the potential of the aptabody BFF to form a bivalent complex could clearly be demonstrated.  相似文献   

11.
The link between metals, Alzheimer''s disease (AD) and its implicated protein, amyloid-β (Aβ), is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1–42) peptides in the presence of copper ions, Cu2+. In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.  相似文献   

12.
There is a need in current atomic force microscopy (AFM) molecular recognition studies for generic methods for the stable, functional attachment of proteins on tips and solid supports. In the last few years, the site-directed nitrilotriacetic acid (NTA)-polyhistidine (Hisn) system has been increasingly used towards this goal. Yet, a crucial question in this context is whether the NTA-Hisn bond is sufficiently strong for ensuring stable protein immobilization during force spectroscopy measurements. Here, we measured the forces between AFM tips modified with NTA-terminated alkanethiols and solid supports functionalized with His6-Gly-Cys peptides in the presence of Ni2+. The force histogram obtained at a loading rate of 6600 pN s(-1) showed three maxima at rupture forces of 153 +/- 57 pN, 316 +/- 50 pN and 468 +/- 44 pN, that we attribute primarily to monovalent and multivalent interactions between a single His6 moiety and one, two and three NTA groups, respectively. The measured forces are well above the 50-100 pN unbinding forces typically observed by AFM for receptor-ligand pairs. The plot of adhesion force versus log (loading rate) revealed a linear regime, from which we deduced a kinetic off-rate constant of dissociation, k(off) approximately 0.07 s(-1). This value is in the range of that estimated for the multivalent interaction involving two NTA, using fluorescence measurements, and may account for an increased binding stability of the NTA-His6 bond. We conclude that the NTA-His6 system is a powerful, well-suited platform for the stable, oriented immobilization of proteins in AFM single-molecule studies.  相似文献   

13.
Sidedness and accessibility of protein epitopes in intact brush border membrane vesicles were analyzed by detecting single molecule interaction forces using molecular recognition force microscopy in aqueous physiological solutions. Frequent antibody-antigen recognition events were observed with a force microscopy tip carrying an antibody directed against the periplasmically located gamma-glutamyltrans- peptidase, suggesting a right side out orientation of the vesicles. Phlorizin attached to the tips bound to NA+/D-glucose cotransporter molecules present in the vesicles. The recognition was sodium dependent and inhibited by free phlorizin and D-glucose, and revealed an apparent K(D) of 0.2 microM. Binding events were also observed with an antibody directed against the epitope aa603-aa630 close to the C terminus of the transporter. In the presence of phlorizin the probability of antibody binding was reduced but the most probable unbinding force f(u) = 100 pN remained unchanged. In the presence of D-glucose and sodium, however, both the binding probability and the most probable binding force (f(u) = 50 pN) were lower than in its absence. These studies demonstrate that molecular recognition force microscopy is a versatile tool to probe orientation and conformational changes of epitopes of membrane components during binding and trans-membrane transport.  相似文献   

14.
We developed a method to measure the rupture forces between antibody and antigen by atomic force microscopy (AFM). Previous studies have reported that in the measurement of antibody–antigen interaction using AFM, the specific intermolecular forces are often obscured by nonspecific adhesive binding forces between antibody immobilized cantilever and substrate surfaces on which antigen or nonantigen are fixed. Here, we examined whether detergent and nonreactive protein, which have been widely used to reduce nonspecific background signals in ordinary immunoassay and immunoblotting, could reduce the nonspecific forces in the AFM measurement. The results showed that, in the presence of both nonreactive protein and detergent, the rupture forces between anti-ferritin antibodies immobilized on a tip of cantilever and ferritin (antigen) on the substrate could be successfully measured, distinguishing from nonspecific adhesive forces. In addition, we found that approach/retraction velocity of the AFM cantilever was also important in the reduction of nonspecific adhesion. These insights will contribute to the detection of specific molecules at nanometer scale region and the investigation of intermolecular interaction by the use of AFM.  相似文献   

15.
The kinetic parameters of single bonds between neural cell adhesion molecules were determined from atomic force microscope measurements of the forced dissociation of the homophilic protein-protein bonds. The analytical approach described provides a systematic procedure for obtaining rupture kinetics for single protein bonds from bond breakage frequency distributions obtained from single-molecule pulling experiments. For these studies, we used the neural cell adhesion molecule (NCAM), which was recently shown to form two independent protein bonds. The analysis of the bond rupture data at different loading rates, using the single-bond full microscopic model, indicates that the breakage frequency distribution is most sensitive to the distance to the transition state and least sensitive to the molecular spring constant. The analysis of bond failure data, however, motivates the use of a double-bond microscopic model that requires an additional kinetic parameter. This double-bond microscopic model assumes two independent NCAM-NCAM bonds, and more accurately describes the breakage frequency distribution, particularly at high loading rates. This finding agrees with recent surface-force measurements, which showed that NCAM forms two spatially distinct bonds between opposed proteins.  相似文献   

16.
We investigated the effect of substrate binding on the mechanical stability of mouse dihydrofolate reductase using single-molecule force spectroscopy by atomic force microscopy. We find that under mechanical forces dihydrofolate reductase unfolds via a metastable intermediate with lifetimes on the millisecond timescale. Based on the measured length increase of approximately 22 nm we suggest a structure for this intermediate with intact substrate binding sites. In the presence of the substrate analog methotrexate and the cofactor NADPH lifetimes of this intermediate are increased by up to a factor of two. Comparing mechanical and thermodynamic stabilization effects of substrate binding suggests mechanical stability is dominated by local interactions within the protein structure. These experiments demonstrate that protein mechanics can be used to probe the substrate binding status of an enzyme.  相似文献   

17.
When a cell adhered to another cell or substratum via surface proteins is forced to detach, lipid membrane tethers are often extruded from the cell surface before the protein bond dissociates. For example, during the inflammatory reaction leukocytes roll on the surface of activated endothelial cells. The rolling adhesion is mediated by interactions of selectins with their ligands, e.g., P-selectin glycoprotein ligand (PSGL)-1, which extrudes membrane tethers from the surfaces of both leukocytes and endothelial cells. Membrane tether extrusion has been suggested to regulate leukocyte rolling. Here we examine several factors that may affect forces required to initiate membrane tethers, or initial tether force. It was found that initial tether forces were similar regardless of the presence or absence of the cytoplasmic tail of P-selectin and regardless of whether the tethers were extruded via binding to PSGL-1 or Fcγ receptors. Initial tether forces were found to depend on the cell types tested and were greatly reduced by treatment of latrunculin A, which inhibits actin polymerization. These data provide additional insights to the control of membrane tether extrusion, which should be taken into account when cellular functions such as rolling where tether extrusion plays a regulatory role are compared using different cell types expressing the same molecule.  相似文献   

18.
Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores.  相似文献   

19.
To understand cell—cell interactions and the interactions of cells to non-biological materials, studies on binding forces between cellular proteins and between proteins and non-biological material such as metal surfaces are essential. The adsorption of proteins to solid—water interfaces is a multifactorial and a multistep process. First steps are determined by long-range interactions where surface properties such as hydrophobicity, distribution of charged groups, ion concentrations and pH play important roles. In later steps structural rearrangements in the protein molecule and dehydration effects become more important making the adsorption process often irreversible. In the following we demonstrate that protein A and tubulin have a specific type of interaction to metal surfaces probably as an intermediate step in the adsorption process. The proteins were attached to the tip of a microfabricated cantilever in such a way that only one molecule interacts with the surface. By recording force—distance curves with an atomic force microscope the adhesion forces of single molecules binding to gold, titanium and indium—tinoxid surfaces were measured.  相似文献   

20.
Samples of kappa-carrageenan, iota-carrageenan, and synthetic amylose have been examined by atomic force microscopy (AFM). All samples were spray deposited from aqueous solutions onto freshly cleaved mica, air dried, and imaged in air using noncontact atomic force microscopy (NCAFM). Images of single stranded amylose and carrageenan are presented. At relatively low polymer concentrations in the presence of NaCl iota-carrageenan formed circles that appear to be predominantly head-to-tail associated unimeric duplex (double stranded) structures. At higher iota-carrageenan concentrations the polymer forms circles and aggregates that appear to involve dimeric duplex structure. Direct comparison of synthetic amylose molecular weights determined from NCAFM images with results from solution measurements showed that NCAFM provides an excellent way to measure amylose molecular weight and molecular weight distribution. It is shown that synthetic amylose is single stranded in aqueous solution and that the chain length distribution is broader than the Poisson distribution anticipated from polymerization theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号