首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the effect of chronic treatment with imipramine, citalopram, and electroconvulsive shock (ECS) on serum and brain copper levels in rats. Chronic treatment with citalopram and imipramine (but not ECS) significantly (approx 14%) decreased the serum copper level. Chronic treatment with both drugs did not alter the brain copper level. However, chronic ECS induced a significant increase (by 36%) in the copper level in the hippocampus and also in the cerebellum (by 16%). In contrast to the zinc, where both pharmacologic and ECS treatment increased its hippocampal concentration, these two antidepressant therapy (drugs versus ECS) differ in their effect on brain copper level. These findings suggest that the mechanism by which copper is involved in ECS differs from that of any involvement in the action of the drugs studied.  相似文献   

2.
Zinc exhibits antidepressant-like activity in preclinical tests/models. Moreover, zinc homeostasis is implicated in the pathophysiology of affective disorders. The aim of the present study was to examine the effect of chronic zinc, citalopram and imipramine intraperitoneal administration on the presynaptic and extracellular zinc concentration in the rat prefrontal cortex and hippocampus. We used two methods: zinc–selenium histochemistry (which images the pool of presynaptic-vesicle zinc) and anodic stripping voltammetry (ASV) for zinc determination in microdialysate (which assays the extracellular zinc concentration). We report that chronic (14×) zinc (hydroaspartate, 10 and 65 mg/kg) and citalopram (20 mg/kg) administration increased the pool of presynaptic zinc (by 34, 50 and 37%, respectively) in the rat prefrontal cortex. The 21% increase induced by imipramine (20 mg/kg) was marginally significant. Likewise, zinc (hydroaspartate, 65 mg/kg), citalopram and imipramine increased the extracellular zinc (although with a different pattern: time point, area under the curve and/or basal level) in this brain region. Furthermore, zinc induced an increase in presynaptic (by 65%) and extracellular zinc (by 90%) in the hippocampus, while both citalopram and imipramine did not. These results indicate that all of the treatments increase presynaptic/extracellular zinc concentrations in the rat prefrontal cortex, which may then contribute to their antidepressant mechanisms. Alterations induced by zinc (but not antidepressants) administration in the hippocampus may be related to specific zinc mechanisms. All the data (previous and present) on the effect of antidepressant treatments on the presynaptic/extracellular zinc concentrations suggest the involvement of this biometal presynaptic/synaptic homeostasis in the antidepressant mechanism(s).  相似文献   

3.
4.
There are many studies of the mechanisms of antidepressants; however, most of these studies were conducted on the hippocampus or frontal cortex. In the present study, we hypothesized that the nucleus accumbens and caudate/putamen might be major targets for antidepressant effects. Thus, we focused on G(olf) protein, a stimulant alpha-subunit of G protein that is coupled with the dopamine D1 receptor and specifically expressed in the striatum (nucleus accumbens, caudate/putamen and olfactory tubercle) in the rat brain. We examined the effects of chronic administration of imipramine, fluvoxamine, maprotiline and, as a negative control, cocaine on the level of G(olf) protein in the rat striatum. We also examined the effect of olfactory bulbectomy. Chronic imipramine treatment (10 mg/kg for 2 or 4 weeks) significantly increased the level of G(olf) in the striatum (by 17% or 18%, respectively), although this increase was not apparent after only 1 week of treatment. The time course of these changes corresponded well to that of the clinical efficacy of imipramine. Chronic fluvoxamine and maprotiline treatment (20 mg/kg for 2 weeks) also significantly increased the level of G(olf) (by 9% and 25%, respectively), but cocaine did not alter it significantly. Bulbectomy decreased the G(olf) protein level by 9%. The increases in G(olf) protein after chronic administration of these three different classes of antidepressants and the decrease after bulbectomy suggest that G(olf) protein may play an important role in the antidepressant effect.  相似文献   

5.
In this study, we identified a novel splice variant of 70-kDa heat shock cognate protein (HSC70), while screening differentially expressed molecules in rat brain after chronic antidepressant treatment. This clone, named HSC49, lacked 470 bp of nucleotides of rat HSC70. HSC49 encoded 442 amino acid residues with a calculated molecular mass of 48.6 kDa. DNA sequence analysis revealed that HSC49 lacked the entire Exon 7 and Exon 8 of the HSC70 gene. Chronic treatment with antidepressant, imipramine or sertraline, induced a 38.5 or 22.5% increase in mRNA levels in rat frontal cortex, respectively, when compared to controls. Western blot analysis also revealed that the protein expression of HSC49 was increased after antidepressant treatment. Our data suggest that HSC49 may be one of the common molecules induced after chronic antidepressant treatment.  相似文献   

6.
Abstract: Single electroconvulsive shock (ECS) induced no change in [3H]quinuclidinyl benzilate ([3H]QNB) binding to muscarinic cholinergic receptors in rat cortex and hippocampus. ECS administered once daily for 7 days induced a significant reduction in [3H]QNB binding in both brain areas. Concurrent ECS reversed the significant increase in cortical [3H]QNB binding induced by chronic atropine administration. These findings may have relevance to the antidepressant or amnestic effects of electroconvulsive therapy.  相似文献   

7.
Recent studies indicate a role of the brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, as well as in the mechanism of action of antidepressant drugs (ADs). It has been shown that serum BDNF levels are decreased in depressed patients. Moreover, antidepressant treatment increases serum BDNF levels and it is positively correlated with medication response. In addition, repeated administration of ADs induces an increase in rat hippocampal or cortical BDNF gene expression. Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment (twice daily for 14 days) of the new AD mirtazapine (5 or 10 mg/kg) on BDNF mRNA level (the Northern blot) in rat hippocampus and cerebral cortex. Imipramine was used as a reference compound. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was collected 24 h after the last doses of mirtazapine and imipramine. We also studied the effect of repeated mirtazapine on the action of the 5-HT2A receptor agonist (+/-)DOI in the behavioral test (head twitches induced by (+/-)DOI) in rats. The obtained results showed that, like imipramine (10 mg/kg), mirtazapine (10 mg/kg) increased BDNF gene expression in both the examined brain regions: in the hippocampus by 24.0 and 26.5%, in the cerebral cortex by 29.9 and 41.5%, respectively, compared with the vehicle-treated control. Neither mirtazapine nor imipramine administered repeatedly at a lower dose (5 mg/kg) significantly changed BDNF mRNA levels in the hippocampus and cerebral cortex. Repeated treatment with mirtazapine (10, but not 5 mg/kg) inhibited the behavioral syndrome induced by (+/-)DOI. This study provides first conclusive evidence that repeated mirtazapine administration increases BDNF mRNA levels; moreover, it indicates that the enhancement of BDNF gene expression may be essential for the clinical effect of mirtazapine.  相似文献   

8.
Abstract: The present study examines the influence of electroconvulsive seizure (ECS), as well as antidepressant drugs, on levels of serotonin2 (5-HT2) receptor mRNA in rat frontal cortex. Using a sensitive RNase protective assay, preliminary studies demonstrated the predicted regional distribution for the 5-HT2 receptor mRNA: levels of 5-HT2 mRNA were highest in frontal cortex (2.58 amol/μg of total RNA), intermediate in neostriatum, thalamus, and midbrain, and lowest in hippocampus, cerebellum, and choroid plexus. Chronic (10 or 14 days), but not acute (1 or 3 days), ECS treatment significantly increased levels of 5-HT2 receptor mRNA. ECS treatment resulted in a similar time-dependent up-regulation of 5-HT2 receptor ligand binding; chronic, but not acute, ECS treatment significantly increased levels of [3H]ketanserin ligand binding, confirming previous reports. Northern blot analysis demonstrated that 5-HT2 receptor mRNA occurs as two bands (~5 and 6 kb in size), both of which were increased by chronic ECS treatment. The influence of antidepressant drug treatments on 5-HT2 receptor mRNA was also examined. Chronic fluoxetine treatment increased levels of 5-HT2 receptor mRNA, although levels of [3H]ketanserin ligand binding were not altered. In contrast, chronic administration of imipramine, mianserin, and tranylcypromine, treatments that decreased ligand binding, did not decrease levels of 5-HT2 receptor mRNA. In fact, mianserin treatment caused a small, but significant, increase in levels of receptor mRNA. The results suggest that ECS up-regulation of 5-HT2 receptor mRNA could underlie the increased density of 5-HT2 receptor binding sites in response to this treatment, but that other mechanisms likely operate in the down-regulation of 5-HT2 receptor ligand binding by antidepressant drug treatments.  相似文献   

9.
The effects of long-term treatment with imipramine or mirtazapine, two antidepressant drugs with different mechanisms of action, on the response of cortical dopaminergic neurons to foot-shock stress or to the anxiogenic drug FG7142 were evaluated in freely moving rats. As expected, foot shock induced a marked increase (+ 90%) in the extracellular concentration of dopamine in the prefrontal cortex of control rats. Chronic treatment with imipramine or mirtazapine inhibited or prevented, respectively, the effect of foot-shock stress on cortical dopamine output. Whereas acute administration of the anxiogenic drug FG7142 induced a significant increase (+ 60%) in cortical dopamine output in control rats, chronic treatment with imipramine or mirtazapine completely inhibited this effect. In contrast, the administration of a single dose of either antidepressant 40 min before foot shock, had no effect on the response of the cortical dopaminergic innervation to stress. These results show that long-term treatment with imipramine or mirtazapine inhibits the neurochemical changes elicited by stress or an anxiogenic drug with an efficacy similar to that of acute treatment with benzodiazepines. Given that episodes of anxiety or depression are often preceded by stressful events, modulation by antidepressants of the dopaminergic response to stress might be related to the anxiolytic and antidepressant effects of these drugs.  相似文献   

10.
M A Wilson  E J Roy 《Life sciences》1986,38(8):711-718
Chronic treatment with the antidepressant imipramine (IMI) leads to accumulation of imipramine's major metabolite desmethylimipramine (DMI) in the brain. Juvenile, young and middle-aged female rats, as well as juvenile and young male rats were treated chronically with imipramine (14 days) and analyzed 24 hours later for levels of IMI and DMI in the hypothalamus-preoptic area (HPA) and serum. Older animals of both sexes showed higher levels of DMI than juvenile animals, in both the HPA and serum. Females also had higher DMI levels than males at comparable ages. Analysis of IMI and DMI levels at intervals after a single imipramine injection suggested that the initial metabolism of imipramine is slower in older animals and in females (compared to males). The results indicate that age and gender alter the initial metabolism of imipramine, leading to enhanced accumulation of metabolites during chronic treatment in older animals and in female rats, compared to younger rats and males, respectively.  相似文献   

11.
G protein-coupled receptor (GPCR) signaling cascades may be key substrates for the antidepressant effects of chronic electroconvulsive seizures (ECS). To better understand changes in these signaling pathways, alterations in levels of mRNA's encoding regulators of G protein signaling (RGS) protein subtypes-2, -4, -7, -8 and -10 were evaluated in rat brain using northern blotting and in situ hybridization. In prefrontal cortex, RGS2 mRNA levels were increased several-fold 2 h following an acute ECS. Increases in RGS8 mRNA were of lesser magnitude (30%), and no changes were evident for the other RGS subtypes. At 24 h following a chronic ECS regimen, RGS4, -7, and -10 mRNA levels were reduced by 20-30%; only RGS10 was significantly reduced 24 h after acute ECS. Levels of RGS2 mRNA were unchanged 24 h following either acute or chronic ECS. In hippocampus, RGS2 mRNA levels were markedly increased 2 h following acute ECS. More modest increases were seen for RGS4 mRNA expression, whereas levels of the other RGS subtypes were unaltered. At 24 h following chronic ECS, RGS7, -8 and -10 mRNA levels were decreased in the granule cell layer, and RGS7 and -8 mRNA levels were decreased in the pyramidal cell layers. Only RGS8 and -10 mRNA levels were significantly reduced in hippocampus 24 h following an acute ECS. Paralleling neocortex, RGS2 mRNA content was unchanged in hippocampus 24 h following either acute or chronic ECS. In ventromedial hypothalamus, RGS4 mRNA content was increased 24 h following chronic ECS, whereas RGS7 mRNA levels were only increased 24 h following an acute ECS. The increased RGS4 mRNA levels in hypothalamus were significant by 2 h following an acute ECS. These studies demonstrate subtype-, time-, and region-specific regulation of RGS proteins by ECS, adaptations that may contribute to the antidepressant effects of this treatment.  相似文献   

12.
The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.  相似文献   

13.
The effects of 5-hydroxytryptamine (5-HT) and 5-HT uptake inhibitors on the dissociation of [3H]paroxetine from rat brain membrane binding sites have been investigated. The dissociation induced by 5-HT (100 microM), paroxetine (0.15 microM), clomipramine (1 microM), citalopram (1 microM), imipramine (1 microM), or norzimeldine (1 microM) was consistent with first-order dissociation kinetics with half-life values of dissociation (t1/2) between 130 and 140 min. The dissociation induced by the combination of 5-HT (100 microM) with either citalopram (1 microM) or imipramine (1 microM) was not different from that initiated by either agent alone. These dissociation data, which are at variance with previous data on the 5-HT transporter labeled with [3H]imipramine, support a single-site model of the antidepressant binding/5-HT uptake site.  相似文献   

14.
Comorbid depression of Alzheimer's disease (AD) is a common mood disorder in the elderly and a broad spectrum of antidepressants have been used for its treatment. Abeta peptides and other derivatives of the amyloid precursor protein (APP) have been implicated as central to the pathogenesis of AD. However, the functional relationship of APP and its proteolytic derivatives to antidepressant therapy is not known. In this study, Western blotting was used to test the ability of the tricyclic antidepressant (TCA) imipramine or the selective serotonin reuptake inhibitor (SSRI) citalopram to change the release of APP and the protein kinase C (PKC) content. Both antidepressants increased APP secretion in primary rat neuronal cultures. Imipramine or citalopram enhanced the level of secreted APP by 3.2- or 3.4-fold, respectively. Increases in PKC level were observed only after imipramine treatment. These in vitro data suggest that both TCA and SSRI are able to interfere with the APP metabolism. Imipramine promotes the non-amyloidogenic route of APP processing via stimulatory effects on PKC. We propose that PKC is not involved in the mechanism underlying the effects of citalopram on the APP metabolism. Since the secreted APP is not further available for the pathological cleavage of beta- and gamma-secretases, antidepressant medication might be beneficial in AD therapy.  相似文献   

15.
Thyroxine synthesis inhibitors produced augmentation in predisposition to catalepsy and a decrease of sexual motivation and acoustic startle reflex response in rat. Sensitivity of these behavioral alterations to antidepressants was unknown. Chronic treatment with prototypical antidepressant imipramine (15 mg/kg, 21 days) prevented manifestation of catalepsy expression and sexual motivation reduction in Wistar rats given propylthiouracil (50 mg/l, 28 days) but did not influence startle reflex amplitude. Behavioral recovery induced by imipramine did not attribute to alterations in locomotor activity in open-field test or body weight gain. 5-HT(2A)-receptor mRNA level in the frontal cortex was not changed either. Model of sexual motivation disturbance and catalepsy induced by propylthiouracil in rat seems to be prospective to study the role of thyroid dysfunctions in mechanisms of depression and antidepressant treatment.  相似文献   

16.
Chronic electroconvulsive shock (ECS) is known to increase the level of serotonin-2 (S2) receptors in male rat brain. Using quantitative autoradiography, we have studied the distribution pattern of these receptors in female as well as male rats and the effect of repeated ECS on the receptor level in both sexes. We find that although the distribution of S2 receptors is generally similar in males and females, they respond differently to repeated ECS. In males we found the expected increase in S2 binding, which was localized to specific cortical, hippocampal, and septal regions. In females, no increase was found in the cortex or septum and relatively small increases were found in the hippocampus. It appears that the regulation of S2 receptors by ECS is sex-dependent.  相似文献   

17.
The influence of chronic administration of antidepressants on cyclic AMP-dependent protein kinase activity was examined in rat frontal cortex. Chronic administration of imipramine, tranylcypromine, or electroconvulsive seizures decreased cyclic AMP-dependent protein kinase activity in soluble fractions by approximately 25%, whereas enzyme activity was increased in the particulate fractions by approximately 20%. In contrast, enzyme activity in crude homogenates was not altered. This effect appears to be specific to antidepressant drugs, because representatives of several other classes of psychotropic drugs-namely, haloperidol, morphine, and diazepam--failed to alter either soluble or particulate levels of cyclic AMP-dependent protein kinase activity in this brain region following chronic administration. When the total particulate fraction was subfractionated, it was found that chronic imipramine treatment significantly increased the activity of cyclic AMP-dependent protein kinase in crude nuclear fractions but not in crude synaptosomal or microsomal fractions. Taken together, the data raise the possibility that chronic antidepressant treatments may stimulate the translocation of cyclic AMP-dependent protein kinase from the cytosol to the nucleus. This effect would represent a novel action of antidepressants that could contribute to the long-term adaptive changes in brain thought to be essential for the clinical actions of these treatments.  相似文献   

18.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

19.
The purpose of the present study is to determine the effect of chronic electroconvulsive shock (ECS) on the expression of beta-adrenergic receptors in rat brain by Western blot using mAb beta CO2, a monoclonal antibody against beta-adrenergic receptors. Rats in ECS treated groups received maximal ECS (70 mA, 0.5 second, 60 Hz) through ear-clip electrodes for 12 consecutive days. The experiment was carried out in 14 discrete regions of brain. Chronic ECS reduced the expression of beta-adrenergic receptors in frontal cortex, temporal cortex, parietooccipital cortex, hippocampus and limbic forebrain, but not in other areas of brain. The regional specificity and the magnitude of the reduction of receptor expression are well correlated with those of the reduction of receptor ligand binding, which was determined using [3H]dihydroalprenolol. To the best of our knowledge, this is the first report to demonstrate that chronic ECS decreases the expression of receptor protein in specific regions of rat brain.  相似文献   

20.
Abstract: Tricyclic and nontricyclic serotonin [5-hydroxytryptamine (5-HT)] uptake inhibitors are widely used for the treatment of depression. Here, we show that both the tricyclic antidepressant imipramine and the nontricyclic antidepressant citalopram competitively inhibit 5-HT transport mediated by the recombinant rat 5-HT transporter SERT1. For citalopram, the concentration producing half-maximal transport inhibition was in the same order of magnitude as its K D value determined by equilibrium binding. In contrast, the inhibitory potency of imipramine was more than one order of magnitude lower than its K D value. Our data are consistent with low-affinity imipramine binding occurring at or close to the substrate recognition site, which also binds citalopram. Occupation of the high-affinity imipramine binding site on SERT1 did not affect 5-HT transport but allosterically displaced citalopram from the substrate recognition site. Consequently, low concentrations of imipramine partially protected 5-HT transport from citalopram inhibition. This protection was only observed in the presence of Na+ because high-affinity imipramine binding is strictly sodium-dependent. Thus, depending on which of its binding sites on SERT1 is occupied, imipramine may exert distinct effects on 5-HT uptake mediated by the recombinant rat 5-HT transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号