首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Microbial fermentation under strictly anaerobic conditions has been conventionally used for the production of 1,3-propanediol, a key raw material required for the synthesis of polytrimethylene terephthalate (PTT) and other polyester fibers. In the current study, we have identified eight strains of microorganism which are able to produce 1,3-propanediol under aerobic condition. Those strains were isolated from garden soil, which were enriched by culturing in LB medium with glycerol added under aerobic condition. The identities of those strains were established based on their 16S rRNA sequences and physiological characteristics. Results indicated 6 strains are Citrobacter freundii and 2 strains are Klebsiella pneumoniae subsp Penumoniae. One of Klebsiella pneumoniae subsp Penumoniae strains, designated as TUAC01, demonstrated comparable levels of 1,3-propanediol oxidoreductase, glycerol dehydratase and glycerol dehydrogenase activity to the anaerobic microorganisms described in the literature. Accordingly, in larger scales (5 l) fed-batch culture the TUAC01 strain showed a remarkable 1,3-propanediol producing potency under aerobic conditions. 60.1 g/l of 1,3-propanediol was yield after 42 h incubation in an agitating bioreactor; and in air-lift bioreactor 66.3 g/l of 1,3-propanediol was yield after 58.5 h incubation. The aerobic ferment process, reduced the product cost and made the biological method of 1,3-propanediol production more attractive.  相似文献   

2.
Summary The structural gene yqhD from a wild-type Escherichia coli encoding 1,3-propanediol oxidoreductase isoenzyme and the structural gene dhaB from Citrobacter freundii encoding glycerol dehydratase were amplified by using the PCR method. The temperature control expression vector pHsh harboring the yqhD and dhaB genes was transformed into E. coli JM109 to yield the recombinant strain E. coli JM109 (pHsh-dhaB-yqhD). The response surface method (RSM) was then applied to further optimize the fermentation condition of the recombinant strain. A mathematical model was then developed to show the effect of each medium composition and their interactions on the production of 1,3-propanediol by recombinant strain E. coli JM109. The model estimated that a maximal yield of 1,3-propanediol (43.86 g/l) could be obtained when the concentrations of glycerol, yeast extract and vitamin B12 were set at 61.8 g/l, 6.2 g/l and 49 mg/l, respectively; and the fermentation time was 30 h. These predicted values were also verified by validation experiments. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a significant increase in the yield of 1,3-propanediol. The yield and productivity under the optimal parameters and process can reach 43.1 g/l and 1.54 g/l/h. Maximum 1,3-propanediol yield of 41.1 g/l was achieved in a 5-l fermenter using the optimized medium. This makes the engineered strain have potential application in the conversion of glycerol to 1,3-propanediol on an industrial scale.  相似文献   

3.
Poly(3-hydroxybutyrate) (PHB) synthesis was analyzed under microaerobic conditions in a recombinant Escherichia coli arcA mutant using glycerol as the main carbon source. The effect of several additives was assessed in a semi-synthetic medium by the 'one-factor-at-a-time' technique. Casein amino acids (CAS) concentration was an important factor influencing both growth and PHB accumulation. Three factors exerting a statistically significant influence on PHB synthesis were selected by using a Plackett-Burman screening design [glycerol, CAS, and initial cell dry weight (CDW) concentrations] and then optimized through a Box-Wilson design. Under such optimized conditions (22.02 g l(-1) glycerol, 1.78 g l(-1) CAS, and 1.83 g l(-1) inoculum) microaerobic batch cultures gave rise to 8.37 g l(-1) CDW and 3.52 g l(-1) PHB in 48 h (PHB content of 42%) in a benchtop bioreactor. Further improvements in microaerobic PHB accumulation were obtained in fed-batch cultures, in which glycerol was added to maintain its concentration above 5 g l(-1). After 60 h, CDW and PHB concentration reached 21.17 and 10.81 g l(-1), respectively, which results in a PHB content of 51%. Microaerobic fed-batch cultures allowed a 2.57-fold increase in volumetric productivity when compared with batch cultures.  相似文献   

4.
1,3-Propanediol (1,3-PD) is widely used in polymer industry in production of polyethers, polyesters and polyurethanes. In this article, a study on 1,3-PD production and tolerance of Halanaerobium saccharolyticum subsp. saccharolyticum is presented. 1,3-PD production was optimized for temperature, vitamin B(12) and acetate concentration. The highest 1,3-PD concentrations and yields (0.6 mol/mol glycerol) were obtained at vitamin B?? concentration 64 μg/l and an inverse correlation between 1,3-PD and hydrogen production was observed with varying vitamin B?? concentrations. In the studied temperature range and initial acetate concentrations up to 10 g/l, no significant variations were observed in 1,3-PD production. High initial acetate (29-58 g/l) was observed to cause slight decrease in 1,3-PD concentrations produced but no effects on 1,3-PD yields (mol/mol glycerol). Initial 1,3-PD concentrations inhibited the growth of H. saccharolyticum subsp. saccharolyticum. When initial 1,3-PD concentration was raised from 1g/l to 57 g/l, a decrease of 12% to 75%, respectively, in the highest optical density was observed.  相似文献   

5.
Human interferon-gamma (hIFN-gamma) was expressed in Escherichia coli BL21(DE3) under the control of the T7 promoter. Glucose was used as the sole source of carbon and energy with simple exponential feeding rate in fed-batch process. Cell density of recombinant E. coli was reached to 100 g dry wt l(-1) under both constant (0.12 h(-1)) and variable (0.12-0.52 h(-1)) specific growth rates. In the variable specific growth rate fed-batch process, plasmid stability and specific yield of rhIFN-gamma were greater than constant specific growth rate fed-batch process. The final specific yield and overall productivity of rhIFN-gamma were 0.35 +/- 0.02 g rhIFN-gamma g(-1) dry cell wt and 0.9 +/- 0.05 g rhIFN-gamma l(-1) h(-1) in the variable specific growth rate fed-batch process, respectively.  相似文献   

6.
The temperature-induced, over-expression of the human growth hormone gene in a recombinant E. coli during high cell density cultivation is reported. Human growth hormone (hGH) production and stability were tested under different heat shock conditions. Cell densities were 25 and 60 g l(-1) in a pH-stat fed-batch mode in defined and complex medium, respectively, and the fermentation time was decreased from 41 to 32 h. hGH was produced at 2 g l(-1) in complex medium. By using glycerol as main carbon source in the complex medium with exponential feeding, cell density and hGH production were increased to 100 g l(-1) and 2.7 g l(-1), respectively.  相似文献   

7.
1,3-Propanediol (1,3-PD) has numerous applications in polymers, cosmetics, foods, lubricants, and medicines as a bifunctional organic compound. The genes for the production of 1,3-PD in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, and gdrAB, which encodes glycerol dehydratase reactivating factor, are naturally under the control of different promoters and are transcribed in different directions. These genes were coexpressed in E. coli using two incompatible plasmids (pET28a and pET22b) in the presence of selective pressure. The recombinant E. coli coexpressed the glycerol dehydratase, 1,3-propanediol oxidoreductase and reactivating factor for the glycerol dehydratase at high levels. In a fed-batch fermentation of glycerol and glucose, the recombinant E. coli containing these two incompatible plasmids consumed 14.3 g/l glycerol and produced 8.6 g/l 1,3-propanediol. In the substitution case of yqhD (encoding alcohol dehydrogenase from E. coli) for dhaT, the final 1,3-propanediol concentration of the recombinant E. coli could reach 13.2 g/l.  相似文献   

8.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under micro-aerobic conditions was investigated in this study. The experimental results of batch fermentation showed that the final concentration and yield of 1,3-PD on glycerol under micro-aerobic conditions approached values achieved under anaerobic conditions. However, less ethanol was produced under microaerobic than anaerobic conditions at the end of fermentation. The batch micro-aerobic fermentation time was markedly shorter than that of anaerobic fermentation. This led to an increment of productivity of 1,3-PD. For instance, the concentration, molar yield, and productivity of 1,3-PD of batch micro-aerobic fermentation by K. pneumoniae DSM 2026 were 17.65 g/l, 56.13%, and 2.94 g l–1 h–1, respectively, with a fermentation time of 6 h and an initial glycerol concentration of 40 g/l. Compared with DSM 2026, the microbial growth of K. pneumoniae AS 1.1736 was slow and the concentration of 1,3-PD was low under the same conditions. Furthermore, the microbial growth in fed-batch fermentation by K. pneumoniae DSM 2026 was faster under micro-aerobic than anaerobic conditions. The concentration, molar yield, and productivity of 1,3-PD in fed-batch fermentation under micro-aerobic conditions were 59.50 g/l, 51.75%, and 1.57 g l–1 h–1, respectively. The volumetric productivity of 1,3-PD under microaerobic conditions was almost twice that of anaerobic fed-batch fermentation, at 1.57 and 0.80 g l–1 h–1, respectively.  相似文献   

9.
The inhibition of lactic acid fermentation by wood hydrolyzate was decreased (approx. 20%) by adaptation of Enterococcus faecalis RKY1 to wood hydrolyzate-based medium whereby lactic acid productivity and cell growth were enhanced by 0.5 g l(-1) h(-1) and 2.1 g l(-1), respectively. When the diluted or concentrated wood hydrolyzate (equivalent to 25-100 g glucose l(-1)) was supplemented with 15 g yeast extract l(-1), 24-93 g lactic acid l(-1) was produced at a rate between 1.7 g l(-1) h(-1) and 3.2 g l(-1) h(-1).  相似文献   

10.
Effects of organic carbon sources on cell growth and alpha-tocopherol productivity in wild and chloroplast-deficient W14ZUL strains of Euglena gracilis under photoheterotrophic culture were investigated. In both strains, the increase in cell growth was particularly high when glucose was added as the sole organic carbon source. On the other hand, alpha-tocopherol production per dry cell weight was enhanced by adding ethanol. Ethanol addition also increased the chlorophyll concentration in wild strain and mitochondria activity in W14ZUL strain. For effective alpha-tocopherol production, the effects of mixture of glucose and ethanol were investigated. The results showed that, when a mixture of glucose (6 g/l) and ethanol (4 g/l) was used, alpha-tocopherol productivity per culture broth was 3.89 x 10(-2) mg l(-1) h(-1), which was higher than the value obtained without addition of organic carbon source (0.92 x 10(-2) mg l(-1) h(-1)). In addition, under fed-batch cultivation using an internally illuminated photobioreactor, the alpha-tocopherol production per culture broth was 23.43 mg/l, giving a productivity of 16.27 x 10(-2) mg l(-1) h(-1).  相似文献   

11.
The microbial production of 1,3-propanediol (1,3-PD) from glucose was studied in a two-stage fermentation process on a laboratory scale. In the first stage, glucose was converted to glycerol either by the osmotolerant yeast Pichia farinosa or by a recombinant Escherichia coli strain. In the second stage, glycerol in the broth from the first stage was converted to 1,3-PD by Klebsiella pneumoniae. The culture broth from P. farinosa was shown to contain toxic metabolites that strongly impair the growth of K. pneumoniae and the formation of 1,3-PD. Recombinant E. coli is more suitable than P. farinosa for producing glycerol in the first stage. The fermentation pattern from glycerol can be significantly altered by the presence of acetate, leading to a significant reduction of PD yield in the second stage. However, in the recombinant E. coli culture acetate formation can be prevented by fed-batch cultivation under limiting glucose supply, resulting in an effective production of 1,3-PD in the second stage with a productivity of 2.0 g l(-1) h(-1) and a high yield (0.53 g/g) close to that of glycerol fermentation in a synthetic medium. The overall 1,3-PD yield from glucose in the two stage-process with E. coli and K. pneumoniae reached 0.17 g/g.  相似文献   

12.
We report a Klebsiella pneumoniae DSM2026 fermentation procedure for the efficient production of a key enzyme of 1,3-propanediol formation: 1,3-propanediol oxidoreductase (E.C. 1.1.1.202). The fermentation process is composed of an aerobic batch phase on glucose and glycerol and an anaerobic phase on glycerol. The role of the aerobic phase is to produce sufficiently high cell mass (12.9–14.6 g/l dry weight) and to activate the aerobic branch of the Klebsiella glycerol pathway, whereas in the anaerobic phase there is a rapid initiation of 1,3-propanediol oxidoreductase formation. A fast change from an aerobic to an anaerobic environment led to a redox imbalance, which resulted in the abrupt activation of the anaerobic branch of glycerol utilization, with the occurrence of a high 1,3-propanediol-oxidoreductase activity. A mathematical model with substrate inhibition showed that the adequate glycerol concentration for enzyme production was 14–16 g/l. The combination of the optimal substrate concentration together with the subsequent use of glucose and glycerol resulted in 90.6 ± 11.6 U enzyme activity referred to 1 l of fermentation broth and 10.3 ± 0.9 U/(1 h) productivity.  相似文献   

13.
A biosynthetic pathway for the production of (S)-3-hydroxybutyric acid (S3HB) from glucose was established in recombinant Escherichia coli by introducing the beta-ketothiolase gene from Ralstonia eutropha H16, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene from R. eutropha H16, or Clostridium acetobutylicum ATCC824, and the 3-hydroxyisobutyryl-CoA hydrolase gene from Bacillus cereus ATCC14579. Artificial operon consisting of these genes was constructed and was expressed in E. coli BL21 (DE3) codon plus under T7 promoter by isopropyl beta-D: -thiogalactoside (IPTG) induction. Recombinant E. coli BL21 (DE3) codon plus expressing the beta-ketothiolase gene, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene, and the 3-hydroxyisobutyryl-CoA hydrolase gene could synthesize enantiomerically pure S3HB to the concentration of 0.61 g l(-1) from 20 g l(-1) of glucose in Luria-Bertani medium. Fed-batch cultures of recombinant E. coli BL21 (DE3) codon plus were carried out to achieve higher titer of S3HB with varying induction time and glucose concentration during fermentation. Protein expression was induced by addition of 1 mM IPTG when cell concentration reached 10 and 20 g l(-1) (OD(600) = 30 and 60), respectively. When protein expression was induced at 60 of OD(600) and glucose was fed to the concentration of 15 g l(-1), 10.3 g l(-1) of S3HB was obtained in 38 h with the S3HB productivity of 0.21 g l(-1)h(-1). Lowering glucose concentration to 5 g l(-1) and induction of protein expression at 30 of OD(600) significantly reduced final S3HB concentration to 3.7 g l(-1), which also resulted in the decrease of the S3HB productivity to 0.05 g l(-1)h(-1).  相似文献   

14.
Kohl ES  Leet TH  Lee DY  Kim HJ  Ryu YW  Seo JH 《Biotechnology letters》2003,25(24):2103-2105
Erythritol production by an osmophilic mutant of Candida magnoliae was performed in fermentations of up 50 l to develop an optimized commercial process. By simultaneous feeding glucose and yeast extract, erythritol productivity of 1.2 g l(-1) h(-1) was reached giving 200 g erythritol l(-1) with a yield of 0.43 g g(-1).  相似文献   

15.
Qu CB  Wu ZY  Shi XM 《Biotechnology letters》2008,30(10):1735-1740
Assimilation of phosphate by Chlorella pyrenoidosa was 0.81-8.1 mg PO(4)-P/g dry weight for heterotrophic cultures and 0.81-16.1 mg/g for mixotrophic cultures. Optimal carbon:phosphorous (C/P) ratios were 206:1-2060:1 and 103:1-2060:1 for heterotrophic and mixotrophic cultivations, respectively. These requirements for phosphate for growth of C. pyrenoidosa under either heterotrophic or mixotrophic conditions are much less (6.25-62.5 or 3.12-62.5-fold at 10 g glucose/l) than its concentration in basal medium.  相似文献   

16.
In this study, a non-woven rotating biological contactor reactor was operated for the start-up of completely autotrophic nitrogen removal over nitrite (CANON) process. In this perfectly attached growth system, nitrite oxidizing was identified, which interfered with the nitrogen removal performance. Batch tests indicated that 10 g NaCl per liter salinity was a preferable definite level to stand out ammonium-oxidizing activity and anammox activity, and selectively suppress nitrite-oxidizing activity under oxygen-limited conditions. Reactor operation showed that the maximum TN removal rate was increased from 425 mg N l(-1) day(-1) to 637 mg N l(-1) day(-1) after the addition of 10 g NaCl per liter salinity on analogous technological parameters. Microbiological community analysis revealed that bacteria strains similar to the genus Nitrospira sp. were specialized nitrite oxidizers existing in CANON reactor, which were then eliminated under salinity exposure for their no salinity-tolerant relative. However, anammox bacteria belonging to Planctomycetes and some aerobic ammonium oxidizers belonging to Nitrosomonas could be highly enriched under this oxygen-limited salinity conditions. Salinity-contained high ammonium wastewater will be so considered as suitable influent for CANON process in further industrial application.  相似文献   

17.
Xu F  Cai ZL  Cong W  Ouyang F 《Biotechnology letters》2004,26(17):1319-1322
The cell growth and eicosapentaenoic acid (EPA) yields of Nannochloropsis sp. were enhanced in the fed-batch cultures. With feeding glucose solution, the biomass reached 1.1 g dry wt l(-1) after 10 days' culture, which was 40% higher than that obtained in the batch culture (0.8 g dry wt l(-1)). With supplement of nitrate solution, the biomass reached 1 g dry wt l(-1), and reached the stationary phase 2 days earlier than the others. The maximum of biomass (1.2 g dry wt l(-1)) was obtained with the supplement of the mixture of glucose and nitrate solution. The EPA yields of Nannochloropsis sp. after 10 days' growth in the fed-batch cultures were 52 mg l(-1), 43 mg l(-1) and 56 mg l(-1) with, respectively, addition of nitrate, glucose and both together. In batch culture only 35 mg EPA l(-1) was obtained.  相似文献   

18.
Kim TB  Oh DK 《Biotechnology letters》2003,25(24):2085-2088
A chemically defined medium that included urea (5 g l(-1)) as a nitrogen source and various vitamins was substituted for a complex medium containing yeast extract (10 g l(-1)) in the production of xylitol by Candida tropicalis. In a fed-batch culture with the chemically defined medium, 237 g xylitol l(-1) was produced from 270 g xylose l(-1) after 120 h. The volumetric rate of xylitol production and the xylitol yield from xylose were 2 g l(-1) h(-1) and 89%, respectively. These values were about 5% lower and 4% higher, respectively, than those obtained using the complex medium. These results indicate that xylitol can be produced effectively in a chemically defined medium.  相似文献   

19.
A gram-negative, rod-shaped, aerobe, capable of converting 2-propanol (isopropanol, IPA) to acetone was isolated from an oil/sump, and identified by 16 S rDNA analysis as Alcaligenes faecalis. Investigations showed this strain to be extremely solvent-tolerant and it was subsequently named ST1. In this study, A. faecalis ST1 cells were immobilized by entrapment in Ca-alginate beads (3 mm in diameter), and used in the bioconversion of high concentration IPA. The biodegradation rates and the corresponding microbial growth inside the beads were measured at four different IPA concentration ranges from 2 to 15 g l(-1). The maximum cell concentration obtained was 9.59 g dry cell weight (DCW) l(-1) medium which equated to 66 g DCW l(-1) gel, at an initial IPA concentration of 15 g l(-1) after 216 h of incubation. A maximum biodegradation rate of 0.067 g IPA g cells(-1) h(-1) was achieved for 5 g l(-1) IPA where an increase in IPA concentration to 38 g l(-1) caused reduction in bead integrity. A modified growth medium was developed which allowed repeated use of the beads for more than 42 days without any loss of integrity and continued bioconversion activity.  相似文献   

20.
Liu HJ  Zhang DJ  Xu YH  Mu Y  Sun YQ  Xiu ZL 《Biotechnology letters》2007,29(8):1281-1285
1,3-Propanediol (1,3-PD) can be produced from glycerol by Klebsiella pneumoniae under micro-aerobic conditions. Recently, this fed-batch fermentation process has been successfully scaled up to 1 m3. The final 1,3-PD concentration, molar yield and volumetric productivity of 72 g l−1, 57% and 2.1 g l−1 h−1, respectively, are close to those of 75 g l−1, 61%, and 2.2 g l−1 h−1 under anaerobic conditions. This process would be suitable for the production of 1,3-PD on a large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号