首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ATPase with Mr of 360,000 was purified from plasma membranes of a thermophilic eubacterium Thermus thermophilus, and was characterized. ATP hydrolytic activity of the purified enzyme was extremely low, 0.07 mumol of Pi released mg-1 min-1, and it was stimulated up to 30-fold by bisulfite. The following properties of the enzyme indicate that it is not a usual F1-ATPase but that it belongs to the V-type ATPase family, another class of ATPases found in membranes of archaebacteria and eukaryotic endomembranes. Among its four kinds of subunits with approximate Mr values of 66,000 (alpha), 55,000 (beta), 30,000 (gamma), and 12,000 (delta), the alpha subunit had a similar molecular size to the catalytic subunits of the V-type ATPases but was significantly larger than the alpha subunit of F1-ATPases. ATP hydrolytic activity was not affected by azide, an inhibitor of F1-ATPases, but was inhibited by nitrate, an inhibitor of the V-type ATPase. N-terminal amino acid sequences determined for the purified alpha and beta subunits showed much higher similarity to those of the V-type ATPases than those of F1-ATPases. Thus the distribution of the V-type ATPase in the prokaryotic kingdom may not be restricted to archaebacteria.  相似文献   

2.
Ascites hepatoma cell line AH-130 was tested for the ability to transport various amino acids and glutathione before and after γ-glutamyl transpeptidase of the cells was affinity-labeled and inactivated by 6-diazo-5-oxo-L-norleucine, a glutamine analog. The rate of uptake of alanine, glycine, leucine and glutamine by the cells remained unchanged after γ-glutamyl transpeptidase was inactivated by this affinity label. This indicated that γ-glutamyl transpeptidase of the cell was not involved in the transport process of these amino acids tested. The uptake of glutathione was also tested before and after affinity labeling the enzyme. The total amount of the radioactivity incorporated into the cells was not significantly affected by the enzyme inactivation. However, the relative amount of incorporated intact glutathione was found to be slightly but significantly increased after membraneous γ-glutamyl transpeptidase was inactivated by the affinity label, while that of component amino acid, glycine, was found to decrease. This indicated that glutathione was taken up by the cell in its intact form as well as in degraded forms into its component amino acids, and γ-glutamyl transpeptidase in the ascites tumor cell AH-130 seemed to be involved in the metabolic process via the latter system.  相似文献   

3.
4.
5.
A DNA-dependent ATPase has been purified from calf thymus. The enzyme hydrolyses ATP and dATP in the presence of heat-denatured DNA. It does not hydrolyse the corresponding nucleoside triphosphates of guanine, uridine and cytosine. The Km values for ATP and dATP are both 0.62 mM. The enzyme requires magnesium or manganese ions. Its sedimentation coefficient is about 4.4 S. The catalytic activity is inhibited by N-ethylmaleimide but is not sensitive to novobiocin and nalidixic acid which are potent inhibitors of bacterial DNA gyrase. In some cases, during purification, chromatographically distinct additional DNA-dependent ATPase activities were detected. Limited proteolysis or covalent modification of the enzyme in the tissues, or during the first steps of its extraction, are probably responsible for the appearance of these chromatographically distinct forms.  相似文献   

6.
Kinetic mechanism of myofibril ATPase.   总被引:18,自引:5,他引:13       下载免费PDF全文
The kinetic mechanism of myofibril ATPase was investigated using psoas and mixed back muscle over a range of ionic strengths. Myofibrils were labeled with pyrene iodoacetamide to measure the rate constants for the binding of ATP and formation of the weakly attached state. The velocity of shortening was measured by stopping the contraction at various times by mixing with pH 4.5 buffer. The transient and steady-state rates of ATP hydrolysis were measured by the quench flow method. The results fitted the kinetic scheme [formula: see text] The rate constants (or equilibrium constants for steps 1 and 6) were obtained for the six steps. k5 was calculated from the KM for shortening velocity, K1, and k2. The rate constants were essentially equal for myofibrils and acto-S-1 at low ionic strength. Increasing the ionic strength up to 100 mM in NaCl increased the rate of the hydrolysis step and the size of the phosphate burst and the effective rate of product release became the rate-limiting step. The step calculated from the velocity of shortening, k5, and k2 is 15 nm, based on a model in which step 4 is the force-generating step.  相似文献   

7.
Na+, K+-dependent ATPase [EC 3.6.1.3] was purified from porcine kidney by the method of Lane et al. [(1973) J. Biol. Chem. 248, 7197-7200] with slight modifications [Yamaguchi, M. & Tonomura, Y., (1979) J. Biochem. 86, 509-523]. The amounts of a phosphorylated intermediate (EP) and ouabain bound to the enzyme during the ATPase reaction were measured in 2.1 mM MgCl2 and various concentrations of NaCl and KCl at pH 7.5 and 20 degrees C. In presence of NaCl and the absence of KCl, the molar ratio of the amounts of EP and bound ouabain was 1 : 2. In the presence of both NaCl and KCl, it was 1 : 1. In both cases, the amount of bound ouabain was equal to that of EP in the absence of ouabain. These findings suggest that the functional unit of the transport ATPase is a dimer.  相似文献   

8.
9.
Sodium-stimulated ATPase in Streptococcus faecalis.   总被引:10,自引:6,他引:4       下载免费PDF全文
We measured Na+-stimulated ATPase activity in a mutant of Streptococcus faecalis defective in the generation of proton motive force. The activity in membrane vesicles was 62.1 +/- 5.9 nmol of phosphate produced per min per mg of protein when cells were grown on medium containing 0.12 M Na+. Activity decreased as the concentration of Na+ in the growth medium decreased. The decrease in enzyme activity corresponded to the decrease in transport activity for Na+ in both whole cells and membrane vesicles. The effects of pH on both activities were identical. Thus, it is suggested that Na+ movement is mediated by this enzyme. Sodium extrusion and ATPase activity in the wild-type strain were markedly lower than those observed in the mutant strain. Elevated activities of both Na+ extrusion and Na+-stimulated ATPase could be detected in the wild-type strain when cells were grown in the absence of proton motive force. Thus, we propose that the level of ATPase is increased by dissipation of the proton motive force.  相似文献   

10.
A fibrillar protein complex, possessing ouabain-insensitive Ca2+-ATPase activity was isolated from human erythrocyte membranes by using a low ionic strength extraction procedure. Mg2+-ATPase activity was revealed upon addition of rabbit skeletal muscle actin, thus demonstrating the presence of a myosin-like protein in the crude extract of the erythrocyte membrane. Upon sodium dodecylsulfate gel electrophoresis, the extract showed mainly the doublet of subunit molecular weight bands of 230 000 and 210 000, and more than 10 faster moving bands. Gel filtration of the erythrocyte membrane extract on Sepharose 4B furnished 4 fractions. Fraction I, containing the doublet and 80 000, 60 000 and 46 000 subunit molecular weight bands was 5-fold purified with respect to Ca2+-ATPase activity, but was devoid of actin-activated Mg2+-ATPase activity. Fraction II, containing only the doublet, was devoid of Ca2+ and actin-activated Mg2+-ATPase activity. The 210 000 subunit molecular weight protein could be phosphorylated in the presence of Mg2+ in the crude extract and Fraction I but not in Fraction II.  相似文献   

11.
Proteins exposed on the cytoplasmic face of isolated chromaffin granules were labelled by lactoperoxidase-catalysed radioiodination and by non-enzymic biotinylation. Granule membranes were then prepared, and the H+-translocating ATPase isolated by fractionation with Triton X-114. The labelling of individual ATPase subunits was assessed by polyacrylamide-gel electrophoresis, followed by autoradiography or by blotting and decoration with 125I-labelled streptavidin. Subunits of 72, 57 and kDa were strongly labelled, and could be removed from the membrane at pH 11: they are therefore extrinsic proteins. The 120 kDa subunit was also labelled, but it was not solubilized at pH 11. Photolabelling with a hydrophobic probe indicated that this subunit penetrates the bilayer, and enzymic degradation studies showed the presence of N-linked oligosaccharides; this subunit therefore spans the chromaffin-granule membrane. Labelling of the 17 kDa subunit occurred predominantly on the extracytoplasmic (matrix) face of the granule membrane. These results are consistent with this V-type ATPase having a structure that is generally similar to that of mitochondrial (F-type) ATPases, although the attachment of the 120 kDa subunit may be asymmetrical.  相似文献   

12.
Preliminary studies on yeast peroxisomes have suggested that the membrane of these organelles may contain a proton-pumping ATPase. It has been reported that peroxisome-associated activity is similar to the F0-F1 mitochondrial type ATPase in its sensitivity to azide at pH 9.0, but characteristics of the plasma membrane type ATPase are also evident in peroxisomal preparations in that they exhibit pH 6.5 activity that is sensitive to vanadate. A comparative study of the prominent organellar ATPase activities was undertaken as a probe into the existence of an enzyme that is unique to the peroxisome, and biochemical properties of yeast mitochondrial, plasma membrane, together with peroxisomally-associated H(+)-ATPases are presented. Enzyme marker analysis of sucrose gradient fractions revealed a high degree of correlation between the amount of azide-sensitive pH 9.0 ATPase activity and that of the mitochondrial membrane marker, cytochrome c oxidase, in peroxisomal preparations. Purified mitochondrial and peroxisomally-associated activities were highly sensitive to the presence of sodium azide, N,N' -dicyclohexylcarbodiimide (DCCD) and venturicidin when measured at pH 9.0. Comparisons of peroxisomal activities with those of the purified plasma membrane at pH 6.0 in the presence of azide showed similar sensitivity profiles with respect to inhibitors of yeast plasma membrane ATPases such as vanadate and p-chloromercuriphenyl-sulfonic acid (CMP). Purified peroxisomal membranes, furthermore, reacted with antibody to the mitochondrial F1 subunit (as revealed by Western blot analysis), and [35S] methionine-labeled, glucose-grown cells processed with unlabeled methanol-grown cells, yielded sucrose gradient fractions that were radioactive in bands that were also recognized by F1 antibody. Isolated fractions in these experiments had similar ratios of cpm:pH 9.0 ATPase activities, suggesting that this activity is mitochondrial in origin. The data presented for the characteristics of the peroxisomally-associated activity strongly suggest that the majority of the ATPase activity found in peroxisomal preparations is derived from other organelles.  相似文献   

13.
Summary The mitochondrial ATPase from a PHO 1 mutant (OLI 2, PHO 1, OLI 4 region on mit DNA of S. cerevisiae) was further examined. A new purification method using Lysolecithin instead of Triton allowed us to solubilize and separate a heterogeneous ATPase population from PHO 1-mitochondria: the major abnormal fraction had extremely low oligomycin-sensitivity (but normal specific immunological reactivity), while a minor normal fraction (representing about 20% of the initial mitochondrial ATPase activity) had high sensitivity and affinity for oligomycin.Moderate urea treatment of PHO 1-mitochondria leads to partial loss of ATPase activity and a concomitant increase of oligomycin-sensitivity, suggesting that a heterogeneous ATPase population exists in situ in the mitochondrial membrane: part of the major abnormal ATPase fraction is selectively inactivated by urea, producing a concomitant enrichment in the initially minor normal ATPase fraction.If the minor normal ATPase fraction is the only one capable of in vivo ATP synthesis, the deficient but oligomycin-sensitive cell growth and oxidative phosphorylation in vitro are readily explained.Further structural studies are under way to ascertain whether the minor normal ATPase fraction is strictly identical to the wild type, in which case PHO 1 is a regulatory gene, or not, in which case PHO 1 is a structural gene.  相似文献   

14.
Structure and function of chloroplast ATPase.   总被引:8,自引:0,他引:8  
  相似文献   

15.
16.
A metal ion-activated acid ATPase was present in chicken liver lysosomes. We used Zn2+ as an activator. Lysosomal extract containing octylglucoside from chicken liver was centrifuged at 100,000 xg for 60 min. The supernatant was analyzed by gel filtration on a Sepharose 6B column. Two peaks of metal ion-activated acid ATPase activities were obtained according to the distribution patterns. Each of the two active fractions was incubated with phosphatidylinositol-specific phospholipase C at 37 degrees C for 60 min. The resulting solution was analyzed by gel filtration on a smaller size column of Sepharose 6B again. Molecular weight of the major peak was altered from approx. 1,600,000 to 130,000, whereas that of the minor one, 700,000, remained unchanged.  相似文献   

17.
18.
A variety of the biochemical properties of the electrogenic plasma membrane ATPase of Neurospora crassa are described. The enzyme catalyzes the hydrolysis of ATP, resulting in the formation of ADP and inorganic phosphate. Optimal activity is observed between pH 6 and 6.5. ATP hydrolysis approaches a maximum rate at an Mg-ATP concentration of 10–20 mm with a half-maximal velocity around 2 mm Mg-ATP. The enzyme requires a divalent cation for activity in the following order of preference at 10 mm: Mg2+, Co2+ > Mn2+ > Zn2+ > Fe2+, Ca2+, Cu2+. The enzyme is quite specific for ATP compared to the other nucleotides tested. Treatment of the plasma membranes with sodium deoxycholate inactivates the ATPase and the inactivation can be prevented by the addition of certain acidic phospholipids with the deoxycholate. Other classes of lipids cannot prevent the deoxycholate inhibition. The organic mercurials parachloromercuribenzoate and parachloromercuriphenylsulfonate are potent inhibitors of the ATPase, but N-ethylmaleimide at a similar concentration is not inhibitory. The organic mercurial inhibition is not reversed by mercaptoethanol. Under appropriate conditions, the inhibitory effect of p-chloromercuribenzoate is suppressed in the presence of ATP. Treatment of the plasma membranes with trypsin leads to a marked inhibition of the ATPase activity and this inhibition can be prevented by Mg-ATP. Neither the organic mercurial reactive site(s) nor the trypsin-sensitive site(s) are accessible from the outer surface of the plasma membranes. Some of the implications of the above findings are discussed.  相似文献   

19.
An ATPase which strikingly differed from the mitochondrial ATPases of yeast and of animal tissues was obtained when wheat seedling mitochondria, or electron transport particles derived from them, were subjected to ultrasonication and treated with ammonium sulphate. The enzyme which was purified by chromatography on Sephadex G-100 and DEAE-Sephadex (A50) failed to be inactivated as low as 43 000. The enzyme preparation was capable of hydrolysing ADP, in addition to ATP, and several other nucleoside diphosphates and triphosphates. In contrast to the ATPase of animal mitochondria, the activity of the wheat enzyme was almost as insensitive to oligomycin in intact mitochondria as it was after isolation from the organelles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号